Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T15:22:07.046Z Has data issue: false hasContentIssue false

Combustion Synthesis of TiN Induced by High-energy Ball Milling of Ti Under Nitrogen Atmosphere

Published online by Cambridge University Press:  31 January 2011

F. J. Gotor
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto C.S.I.C./Universidad de Sevilla, Avda. Americo Vespucio S/N, 41092 Sevilla, Spain
M. D. Alcalá
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto C.S.I.C./Universidad de Sevilla, Avda. Americo Vespucio S/N, 41092 Sevilla, Spain
C. Real
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto C.S.I.C./Universidad de Sevilla, Avda. Americo Vespucio S/N, 41092 Sevilla, Spain
J. M. Criado
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro Mixto C.S.I.C./Universidad de Sevilla, Avda. Americo Vespucio S/N, 41092 Sevilla, Spain
Get access

Abstract

A planetary ball-mill device that enables one to perform solid-gas reactions at constant pressure was developed. Titanium powders were ball milled under nitrogen at a spinning rate of 960 rpm. The influence of the nitrogen pressure on the mechanochemical reactivity of titanium was analyzed at 1.5 and 11 bars. A spontaneous combustion took place during the grinding process, leading to a high yield of TiN for short milling times. The conversion of titanium into titanium nitride was facilitated by increasing the nitrogen pressure. At 11 bars, full conversion was reached for grinding times shorter than 5 h. Titanium nitride obtained in this way exhibited a high sintering activity.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bars, J.P., David, D., Etchessahar, E., and Debuigne, J., Metall. Trans. A 14, 1537 (1983).CrossRefGoogle Scholar
White, G.V., Mackenzie, K.J.D., and Johnston, D., J. Mater. Sci. 27, 4287 (1992).CrossRefGoogle Scholar
Shaviv, R., Mater. Sci. Eng. A 209, 345 (1996).CrossRefGoogle Scholar
(a) Dekker, J.P., Put, P.J. van der, Veringa, H.J., and Schoonman, J., J. Mater. Chem. 4, 689 (1994); (b) J.P. Dekker, P.J. van der Put, H.J. Veringa, and J. Schoonman, J. Am. Ceram. Soc. 80, 629 (1997).CrossRefGoogle Scholar
Sato, T., Yasuda, S., Usuki, K., Yoshioka, T., and Okuwaki, A., J. Mater. Sci. 31, 2495 (1996).CrossRefGoogle Scholar
Castro, D.T. and Ying, J.Y., Nanostruct. Mater. 9, 67 (1997).CrossRefGoogle Scholar
Clement, F., Bastians, P., and Grange, P., Solid State Ionics 101–103, 171 (1997).CrossRefGoogle Scholar
Nakagawa, Y., Grigoriu, C., Masugata, K., Jiang, W., and Yatsui, K., J. Mater. Sci. 33, 529 (1998).CrossRefGoogle Scholar
Nakajima, K. and Shimada, S., J. Mater. Chem. 8, 955 (1998).CrossRefGoogle Scholar
Fan, G.J., Guo, F.Q., Hu, Z.Q., Quan, M.X., and Lu, K., Phys. Rev. B 55, 11010 (1997).CrossRefGoogle Scholar
Zhang, H. and Kisi, E.H., J. Alloys Compd. 248, 201 (1997).CrossRefGoogle Scholar
Klassen, T., Oehring, M., and Bormann, R., Acta Mater. 45, 3935 (1997).CrossRefGoogle Scholar
Bryden, K.J. and Ying, J.Y., Acta Mater. 44, 3847 (1996).CrossRefGoogle Scholar
Matteazzi, P. and Alcala, M.D., Mater. Sci. Eng. A 230, 161 (1997).CrossRefGoogle Scholar
Figueiredo, R.S., Messai, A., Hernandes, A.C., and Sombra, A.S.B., J. Mater. Sci. Lett. 17, 449 (1998).CrossRefGoogle Scholar
Calka, A. and Nikolov, J.I., Nanostruct. Mater. 6, 409 (1995).CrossRefGoogle Scholar
Chen, Y., Willians, J.S., and Wang, G.M., J. Appl. Phys. 79, 3956 (1996).CrossRefGoogle Scholar
Li, Z.L., Willians, J.S., and Calka, A., J. Appl. Phys. 81, 8029 (1997).CrossRefGoogle Scholar
Lim, W.Y., Hida, M., Sakakibara, A., Takemoto, Y., and Yokomizo, S., J. Mater. Sci. 28, 3463 (1993).CrossRefGoogle Scholar
Ogino, Y., Yamasaki, T., Miki, M., Atsumi, N., and Yoshioka, K., Scripta Metall. Mater. 28, 967 (1993).CrossRefGoogle Scholar
El-Eskandarany, M.S., Sumiyama, K., Aoki, K., and Suzuki, K., J. Mater. Res. 7, 888 (1992).CrossRefGoogle Scholar
Criado, J.M., Alcala, M.D., and Real, C., Solid State Ionics 101–103, 1387 (1997).CrossRefGoogle Scholar
Chin, Z.H. and Perng, T.P., Appl. Phys. Lett. 70, 2380 (1997).CrossRefGoogle Scholar
Chen, Y., Li, Z.L., and Williams, J.S., J. Mater. Sci. Lett. 14, 542 (1995).CrossRefGoogle Scholar
Wexler, D., Calka, A., and Mosbah, A.Y., J. Alloys Comp. 309, 201 (2000).CrossRefGoogle Scholar
Zhang, H., Kisi, E.H., and Myhra, S., J. Phys. D: Appl. Phys. 29, 1367 (1996).CrossRefGoogle Scholar
Warren, B.E., X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969).Google Scholar
Edward, H.J. and Toman, K., J. Appl. Cryst. 4, 332 (1971).CrossRefGoogle Scholar
Keijser, Th.H. de, Langford, J.I., Mittemeijer, E.J., and Vogels, A.B.P., J. Appl. Cryst. 15, 308 (1982).CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E., X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley & Sons, New York, 1979).Google Scholar
Thomas, J.M., Adv. Catal. 19, 293 (1969).CrossRefGoogle Scholar
Clegg, W.J., J. Am. Ceram. Soc. 83, 1039 (2000).CrossRefGoogle Scholar
Alloy Phase Diagrams, ASM Handbook, Vol. 3 (ASM International, Materials Park, OH, 1992), pp. 2205.Google Scholar
Magini, M., Colella, C., Iasonna, A., and Padella, F., Acta Mater. 46, 2841 (1998).CrossRefGoogle Scholar
Burgio, N., Iasonna, A., Magini, M., Martelli, S., and Padella, F., Il Nuovo Cimento 13, 459 (1991).CrossRefGoogle Scholar
Stewart, J.M., Kundell, F.A., and Baldwin, J.C., The X-Ray 70 System Computer Science Center (University of Maryland, Baltimore, MD, 1970).Google Scholar
Munir, Z.A., Am. Ceram. Soc. Bull. 67, 342 (1988).Google Scholar
Eslamloo-Grami, M. and Munir, Z.A., J. Am. Ceram. Soc. 73, 2222 (1990).CrossRefGoogle Scholar
Pelekh, A.E., Mukasyan, A.S., and Varma, A., Ind. Eng. Chem. Res. 38, 793 (1999).CrossRefGoogle Scholar
Atzmon, M., Phys. Rev. Lett. 64, 487 (1990).CrossRefGoogle Scholar
Schaffer, G.B. and Mc, P.G.Cormick, Metall. Trans. A 23, 1285 (1992).CrossRefGoogle Scholar
Takacs, L. and Susol, M.A., J. Solid State Chem. 121, 394 (1996).CrossRefGoogle Scholar
Real, C., Garcia, L., Alcala, M.D., and Criado, J.M., Solid State Ionics 141–142, 671 (2001).CrossRefGoogle Scholar
Gaffet, E. and Malhouroux, N.-Gaffet, J. Alloys Comp. 205, 27 (1994).CrossRefGoogle Scholar
Shaw, L.L., Yang, Z., and Ren, R., J. Am. Ceram. Soc. 81, 760 (1998).CrossRefGoogle Scholar
Gras, Ch., Vrel, D., Gaffet, E., and Bernard, F., J. Alloys Comp. 314, 240 (2001).CrossRefGoogle Scholar