Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T15:52:48.579Z Has data issue: false hasContentIssue false

Combustion synthesis of nanoparticulate LiMgxMn1−xPO4 (x = 0, 0.1, 0.2) carbon composites

Published online by Cambridge University Press:  31 January 2011

Albert Aumentado
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
Get access

Abstract

A combustion synthesis technique was used to prepare nanoparticulate LiMgxMn1−xPO4 (x = 0, 0.1, 0.2)/carbon composites. Powders consisted of carbon-coated particles about 30 nm in diameter, which were partly agglomerated into larger secondary particles. The utilization of the active materials in lithium cells depended most strongly on the post-treatment and the Mg content and was not influenced by the amount of carbon. Best results were achieved with a hydrothermally treated LiMg0.2Mn0.8PO4/C composite, which exhibited close to 50% utilization of the theoretical capacity at a C/2 discharge rate.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Delacourt, C., Laffont, L., Bouchet, R., Wurm, C., Leriche, J-B., Morcrette, M., Tarascon, J-M., Masquelier, C.Towards understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J. Electrochem. Soc. 152, A913 (2005)CrossRefGoogle Scholar
2.Yonemura, M., Yamada, A., Takei, Y., Sonoyama, N., Kanno, R.Comparative kinetic study of olivine LixMPO4 (M = Fe, Mn). J. Electrochem. Soc. 151, A1352 (2004)CrossRefGoogle Scholar
3.Yamada, A., Chung, S-C.Crystal chemistry of the olivine-type Li(MnyFe1−y)PO4 and (MnyFe1−y)PO4 as possible 4 V cathode materials for lithium batteries. J. Electrochem. Soc. 148, A960 (2001)CrossRefGoogle Scholar
4.Wang, L., Zhou, F., Ceder, G.Ab initio study of the surface properties and nanoscale effects of LiMnPO4. J. Electrochem. Soc. 11, A94 (2008)Google Scholar
5.Delacourt, C., Poizot, P., Morcrette, M., Tarascon, J-M., Masquelier, C.One step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem. Mater. 16, 93 (2004)CrossRefGoogle Scholar
6.Kwon, N-H., Drezen, T., Exnar, I., Teerlinck, I., Isono, M., Graetzel, M.Enhanced electrochemical performance of mesoparticulate LiMnPO4 for lithium ion batteries. Electrochem. Solid-State Lett. 9, A277 (2006)CrossRefGoogle Scholar
7.Yang, J., Xu, J.J.Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route. J. Electrochem. Soc. 153, A716 (2006)CrossRefGoogle Scholar
8.Kim, T.R., Kim, D.H., Ryu, H.W., Moon, J.H., Lee, J.H., Boo, S., Kim, J.Synthesis of lithium manganese phosphate nanoparticle and its properties. J. Phys. Chem. Solids 68, 1203 (2007)CrossRefGoogle Scholar
9.Bakenow, Z., Taniguchi, I.Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries. Electrochem. Commun. 12, 75 (2010)CrossRefGoogle Scholar
10.Kohmoto, M., Tabuchi, T., Inamasu, T., Murata, T.Effect of carbon loading method on electrochemical characteristics of LiMnPO4 positive active materials for Li-ion cells214th Meeting of the Electrochemical Society/Prime 2008(The ElectrochemicalSociety Honolulu HI October 12–17 2008) Abstract 1158Google Scholar
11.Drezen, T., Kwon, N-H., Bowen, P., Terrlinck, I., Isono, M., Exnar, I.Effect of particle size on LiMnPO4 cathodes. J. Power Sources 174, 949 (2007)CrossRefGoogle Scholar
12.Martha, S.K., Markovsky, B., Grinblat, J., Gofer, Y., Haik, O., Zinigrad, E., Aurbach, D., Drezen, T., Wang, D., Deghenghi, G., Exnar, I.LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J. Electrochem. Soc. 156, A541 (2009)CrossRefGoogle Scholar
13.Chen, G., Wilcox, J.D., Richardson, T.J.Improving the performance of lithium manganese phosphate through divalent cation substitution. Electrochem. Solid-State Lett. 11, A190 (2008)CrossRefGoogle Scholar
14.Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., Exarhos, G.J.Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater. Lett. 10, 12 (1990)CrossRefGoogle Scholar
15.Doeff, M.M., Wilcox, J.D., Yu, R., Aumentado, A., Marcinek, M., Kostecki, R.Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites. J. Solid State Electrochem. 12, 995 (2008)CrossRefGoogle Scholar
16.Chen, J., Vacchio, M.J., Wang, S., Chernova, N., Zavalij, P.Y., Whittingham, M.S.The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ionics 178, 1676 (2008)CrossRefGoogle Scholar
17.Tajimi, S., Ikeda, Y., Uematsu, K., Toda, K., Sato, M.Enhanced electrochemical performance of LiFePO4 prepared by hydrothermal reaction. Solid State Ionics 175, 287 (2004)CrossRefGoogle Scholar
18.Geller, S., Durand, J.L.Refinement of the structure of LiMnPO4. Acta Crystallogr. 13, 325 (1960)CrossRefGoogle Scholar
19.Zhang, J., Gao, L.Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method. Mater. Res. Bull. 39, 2249 (2004)CrossRefGoogle Scholar
20.Wilcox, J.D., Doeff, M.M., Marcinek, M., Kostecki, R.Factors influencing the quality of carbon coatings on LiFePO4. J. Electrochem. Soc. 154, A389 (2007)CrossRefGoogle Scholar
21.Bruba, C.B., Frech, R.Raman and FTIR spectroscopic study of LixFePO4 (0≤ x≤1). J. Electrochem. Soc. 151, A1032 (2004)CrossRefGoogle Scholar
22.Dominko, R., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D., Goupil, J.M., Pejovnik, S., Jamnik, J.Porous olivine composites synthesized by sol-gel technique. J. Power Sources 153, 274 (2006)CrossRefGoogle Scholar
23.Shiratsuchi, T., Okada, S., Doi, T., Yamaki, J.Cathodic performance of LiMn1−xMxPO4 (M = Ti, Mg, and Zr) annealed in an inert atmosphere. Electrochim. Acta 54, 3145 (2009)CrossRefGoogle Scholar
24.Ishihara, T., Koga, M., Matsumoto, H., Yoshio, M.Electrochemical intercalation of hexafluorophosphate anion into various carbons for cathode of dual-carbon rechargeable battery. Electrochem. Solid-State Lett. 10, A74 (2007)CrossRefGoogle Scholar
25.Seel, J.A., Dahn, J.R.Electrochemical Intercalation of PF6 into graphite. J. Electrochem. Soc. 147, 892 (2000)CrossRefGoogle Scholar
26.Marcinek, M., Kostecki, R.An in situ Raman study of electrochemical PF6− intercalation into carbon blackThe 58th Annual Meeting of the International Society of Electrochemistry (TheInternational Society of Electrochemistry Banff, Canada 2007)Google Scholar
27.Chen, G., Richardson, T.J.Solid solution phases in the olivine-type LiMnPO4/MnPO4 system. J. Electrochem. Soc. 156, A756 (2009)CrossRefGoogle Scholar