Skip to main content Accessibility help
×
Home

Combustion synthesis of mechanically activated powders in the Ti–Si system

  • F. Maglia (a1), U. Anselmi-Tamburini (a1), G. Cocco (a2), M. Monagheddu (a2), N. Bertolino (a3) and Z. A. Munir (a3)...

Abstract

The effect of the mechanical activation of the reactants on the self-propagating high-temperature synthesis (SHS) of titanium silicides was investigated. SHS experiments were performed on reactant powders that were milled for different times. Mechanical activation was shown to have a large influence on the combustion characteristics, particularly on wave speed. A much weaker effect was observed on the products phase composition. Single-phase products were obtained only from Ti:Si = 1:2 and Ti:Si = 5:3 starting compositions. Observation of microstructural evolution in quenched reactions of Ti:Si = 1:2 mixtures milled for relatively long times revealed that the combustion reaction was primarily a solid-state process restricted to a surface layer of the large Ti grains. A secondary process involving a solid–liquid interaction between solid Ti and melted Si was dominant in the post front region. The mechanical activation in this case took the role of increasing the contact surface between the reactants. A single reaction coalescence mechanism involving only liquid phases was proposed for the Ti:Si = 5:3 composition. For this composition the apparent activation energy for the overall combustion process was determined (155 kJ mol−1) and was shown to be independent on the degree of mechanical activation of the reactants.

Copyright

Corresponding author

a)Address all correspondence to this author.tau@chifis.unipv.it

References

Hide All
1.Sarkisyan, A.R., Dolukhanyan, S.K., Borovinskaya, I.P., and Merzhanov, A.G., Combust. Explos. Shock Waves 14, 49 (1978).
2.Sarkisyan, A.R., Dolukhanyan, S.K., and Borovinskaya, I.P., Sov. Powder Metall. Met. Ceram. (Engl. Transl.) 186, 424 (1978).
3.Sarkisyan, A.R., Dolukhanyan, S.K., and Borovinskaya, I.P., Combust. Explos. Shock Waves 15, 95 (1979).
4.Zhang, S. and Munir, Z.A., J. Mater. Sci. 26, 3685 (1991).
5.Deevi, S., Mater. Sci. Eng. A 149, 241 (1992).
6.Bhaduri, S.B., Radhakrishnan, R., and Qian, Z.B., Scripta Metall. Mater. 29, 1089 (1993).
7.Subrahmanyam, J. and Mohan Rao, R., Mater. Sci. Eng. A 183, 205 (1994).
8.Bertolino, N., Anselmi-Tamburini, U., Maglia, F., Spinolo, G., and Munir, Z.A., J. Alloys Compd. 288, 238 (1999).
9.Maglia, F., Anselmi-Tamburini, U., Bertolino, N., Milanese, C., and Munir, Z.A., J. Mater. Res. 15, 1098 (2000).
10.Feng, A. and Munir, Z.A., J. Appl. Phys. 76, 1927 (1994).
11.Yen, B.K., Aizawa, T., and Kihara, J., J. Am. Ceram. Soc. 81, 1953 (1998).
12.Bernard, F., Charlot, F., Gaffet, E., and Niepce, J.C., Int. J. Self-Propag. High-Temp. Synth. 7, 253 (1998).
13.Schaffer, G.B. and McCormick, P.G., Scripta Metall. 23, 835 (1989).
14.Atzmon, M., Phys. Rev. Lett. 64, 487 (1990).
15.Popovich, A.A., Reva, V.P., Vasilenko, V.N., and Belous, O.A., Mater. Sci. Forum 88–90, 737 (1992).
16.Ma, E., Pagan, J., Cranford, G., and Atzmon, M., J. Mater. Res. 8, 1836 (1993).
17.Takacs, L., J. Solid State Chem. 125, 75 (1996).
18.Takacs, L., Mater. Sci. Forum 269–272, 513 (1998).
19.Munir, Z.A., Charlot, F., Bernard, F., and Gaffet, E., U.S. Patent Application Serial No. 09 374 049 (August 13, 1999).
20.Rogachev, A.S., Shugaev, V.A., Khomenko, I.O., Varma, A., and Kachelmyer, C.R., Combust. Sci. Technol. 109, 53 (1995).
21.Trambukis, J. and Munir, Z.A., J. Am. Ceram. Soc. 73, 1240 (1990).
22.Wang, L.L. and Munir, Z.A., Metall. Mater. Trans. 26B, 595 (1995).
23.Binary Alloy Phase Diagram, edited by Massalski, T.B. (American Society for Metals, Metals Park, OH44073, 1986), Vol. 2.
24.Schlesinger, M.E., Chem. Rev. 90, 607 (1990).
25.Azatyan, T.S., Mal’tsev, V.M., Merzhanov, A.G., and Seleznev, V.A., Combust. Explos. Shock Wave (Engl. Trans.) 15, 35 (1979).
26.Bhaduri, S.B., Radhakrishnan, R., and Qian, Z.B., Scripta Metall. Mater. 29, 1089 (1993).
27.Doppiu, S., Monagheddu, M., Cocco, G., Maglia, F., Anselmi-Tamburini, U., and Munir, Z.A. (submitted for publication).
28.Yan, Z.H., Oehring, M., and Bormann, R., J. Appl. Phys. 72, 2478 (1992).
29.Oehring, M., Yan, Z.H., Klassen, T., and Bormann, R., Phys. Status Solidi 131, 671 (1992).
30.Park, Y.H. and Hashimoto, H., Mater. Sci. Eng. A181/A182, 1212 (1994).
31.Radinskly, A.P. and Calka, A., Mater. Sci. Eng. A134, 1376 (1991).
32.Yen, B.K., J. Appl. Phys. 81, 7061 (1997).
33.Munir, Z.A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 277 (1989).
34.Cockeram, B.V. and Rapp, R.A., Metall. Mater. Trans. 26A, 777 (1995).
35.Samsonov, G.V. and Vinitskii, I.M., Handbook of Refractory Compounds (Plenum, New York, 1980) p. 555.
36.Orru, R., Woolman, J., Cao, G., and Munir, Z.A., (unpublished).
37.Räisänen, J. and Keinonen, J., Appl. Phys. Lett. 49, 773 (1986).
38.Aldushin, A.P. and Khaikin, B.I., Comb. Expl. Shock Waves 10, 273 (1973).
39.Hart, A.P. and Phung, P.V., Comb. Flame 21, 77 (1973).
40.Armstrong, R. and Koszykowski, M., in Combustion and Plasma Synthesis of High Temperature Materials, edited by Munir, Z.A. and Holt, J.B. (VCH, New York, 1990).

Combustion synthesis of mechanically activated powders in the Ti–Si system

  • F. Maglia (a1), U. Anselmi-Tamburini (a1), G. Cocco (a2), M. Monagheddu (a2), N. Bertolino (a3) and Z. A. Munir (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed