Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-21T21:54:51.903Z Has data issue: false hasContentIssue false

Combustion synthesis of mechanically activated powders in the Nb–Si system

Published online by Cambridge University Press:  31 January 2011

Filippo Maglia
Affiliation:
Department of Physical Chemistry and C.S.T.E./CNR, University of Pavia, V. le Taramelli 16, I-27100 Pavia, Italy
Chiara Milanese
Affiliation:
Department of Physical Chemistry and C.S.T.E./CNR, University of Pavia, V. le Taramelli 16, I-27100 Pavia, Italy
Umberto Anselmi-Tamburini*
Affiliation:
Department of Physical Chemistry and C.S.T.E./CNR, University of Pavia, V. le Taramelli 16, I-27100 Pavia, Italy
Stefania Doppiu
Affiliation:
Department of Chemistry, Via Vienna 2, I-07100 Sassari, Italy
Giorgio Cocco
Affiliation:
Department of Chemistry, Via Vienna 2, I-07100 Sassari, Italy
*
a)Address all correspondence to this author.tau@chiffs.unipv.it
Get access

Abstract

The effect of the mechanical activation of the reactants on the self-propagating high-temperature synthesis (SHS) of niobium silicides was investigated. SHS experiments were performed on reactant powder blends of composition Nb:Si = 1:2 and Nb:Si = 5:3 pretreated for selected milling times. A self-sustaining reaction could be initiated when a sufficiently long milling time was employed. At short milling times, the reactions self-extinguished or propagated in an unsteady mode. Combustion peak temperature, wave velocity, and product composition were markedly influenced by the length of the milling treatment. Single-phase products could be obtained for sufficiently long milling times. Observation of microstructural evolution in quenched reactions together with isothermal experiments allowed clarification of the mechanism of the combustion process and the role played by the mechanical activation of the reactants.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rigney, J.D., Singh, P.M., and Lewandowski, J.J., J. Organomet. Chem. 36, 36 (1992).Google Scholar
2.Mendiratta, M.G. and Dimiduk, D.M., inHigh-temperature ordered intermetallic alloys III, edited by Lui, C.T., Taub, A.I., Stoloff, N.S., and Koch, C.C. (Mater. Res. Soc. Symp. Proc. 133,Pittsburgh, PA, 1989), p. 441.Google Scholar
3.Mendiratta, M.G. and Dimiduk, D.M., Scr. Metall. 25, 237 (1991).CrossRefGoogle Scholar
4.Lewandowski, J.J., Dimiduk, D.M., Kerr, W.R., and Mendiratta, M.G., inHigh-temperature/high-performance composites, edited by Lemkey, F.D., Evans, A.G., Fishman, S.G., and Strife, J.R. (Mater. Res. Soc. Symp. Proc. 120, Pittsburgh, PA, 1990), p. 103.Google Scholar
5.Mendiratta, M.G., Lewandowski, J.J., and Dimiduk, D.M., Metall. Trans. A 22A, 1537 (1991).Google Scholar
6.Lou, T., Fan, G., Ding, B., and Hu, Z., J. Mater. Res. 12, 1172 (1997).CrossRefGoogle Scholar
7.Yen, B.K., Aizawa, T., Kihara, J., and Sakakibara, N., Mater. Sci. Eng. A239–240, 515 (1997).CrossRefGoogle Scholar
8.Sarkisyan, A.R., Dolukhanyan, S.K., and Borovinskaya, I.P., Combust. Explos. Shock Waves 15, 95 (1979).CrossRefGoogle Scholar
9.Gedevanishvili, S. and Munir, Z.A., Mater. Sci. Eng. A211, 1 (1996).CrossRefGoogle Scholar
10.Feng, A. and Munir, Z.A., J. Am. Ceram. Soc. 80, 1222 (1997).CrossRefGoogle Scholar
11.Yen, B.K., Aizawa, T., and Kihara, J., J. Am. Ceram. Soc. 81, 1953 (1998).CrossRefGoogle Scholar
12.Bernard, F., Charlot, F., Gaffet, E., and Niepce, J.C., Int. J. Self-Propag. High-Temp. Synth. 7, 253 (1998).Google Scholar
13.Maglia, F., Anselmi-Tamburini, U., Cocco, G., Monagheddu, M., Bertolino, N., and Munir, Z.A., J. Mater. Res. 16, 1074 (2001).Google Scholar
14.Gras, Ch., Vrel, D., Gaffet, E., and Bernard, F., J. Alloys Compd. 314, 240 (2001).CrossRefGoogle Scholar
15.Schaffer, G.B. and McCormick, P.G., Scr. Metall. 23, 835 (1989).CrossRefGoogle Scholar
16.Atzmon, M., Phys. Rev. Lett. 64, 487 (1990).CrossRefGoogle Scholar
17.Popovich, A.A., Reva, V.P., Vasilenko, V.N., and Belous, O.A., Mater. Sci. Forum 88–90, 737 (1992).CrossRefGoogle Scholar
18.Ma, E., Pagan, J., Cranford, G., and Atzmon, M., J. Mater. Res. 8, 1836 (1993).CrossRefGoogle Scholar
19.Takacs, L., J. Solid State Chem. 125, 75 (1996).CrossRefGoogle Scholar
20.Takacs, L., Mater. Sci. Forum 269–272, 513 (1998).Google Scholar
21.Doppiu, S., Monagheddu, M., Cocco, G., Maglia, F., Bertolino, N., Anselmi-Tamburini, U., and Munir, Z.A., J. Mater. Res. 16, 1266 (2001).CrossRefGoogle Scholar
22.Schlesinger, M.E., Chem. Rev. 90, 607 (1990).CrossRefGoogle Scholar
23.Delogu, F., Schiffini, L., and Cocco, G., Philos. Mag. A 81, 1917 (2001).Google Scholar
24.Milanese, C., Ph.D. Thesis, University of Pavia (2001).Google Scholar
25.Munir, Z.A., J. Mater. Synth. Process. 1, 387 (1993).Google Scholar
26.Lutterotti, L., Ceccato, R., Maschio, R. Dal, and Pagani, E., Mater. Sci. Forum 87, 278 (1998).Google Scholar
27.Rietveld, H.M., J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
28.Bertolino, N., Anselmi-Tamburini, U., Maglia, F., Spinolo, G., and Munir, Z.A., J. Alloys Compd. 288, 238 (1999).Google Scholar
29.Maglia, F., Anselmi-Tamburini, U., Bertolino, N., Milanese, C., and Munir, Z.A., J. Mater. Res. 15, 1098 (2000).CrossRefGoogle Scholar
30.Maglia, F., Anselmi-Tamburini, U., Milanese, C., Bertolino, N., and Munir, Z.A., J. Alloys Compd. 319, 108 (2001).CrossRefGoogle Scholar
31.Rogachev, A.S., Shugaev, V.A., Khomenko, I.O., Varma, A., and Kachelmyer, C.R., Combust. Sci. Technol. 109, 53 (1995).CrossRefGoogle Scholar
32.Maglia, F., Anselmi-Tamburini, U., Bertolino, N., Milanese, C., and Munir, Z.A., J. Mater. Res. 16, 535 (2001).Google Scholar
33.Dyer, T.S., Munir, Z.A., and Ruth, V., Scr. Mater. 30, 1281 (1994).Google Scholar
34.Reiss, M.E., Esber, C.M., Heerden, D. Van, and Weihs, T.P., Mater. Sci. Eng. A261, 217 (1999).CrossRefGoogle Scholar