Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T15:15:28.207Z Has data issue: false hasContentIssue false

Combined synchrotron x-ray diffraction and micro-Raman for following in situ the growth of solution-deposited YBa2Cu3O7 thin films

Published online by Cambridge University Press:  01 December 2005

F. Berberich
Affiliation:
ESRF, 38043 Grenoble Cedex 9, France
H. Graafsma
Affiliation:
ESRF, 38043 Grenoble Cedex 9, France
B. Rousseau*
Affiliation:
CNRS – CRMHT, 45071 Orléans, France
A. Canizares
Affiliation:
CNRS – CRMHT, 45071 Orléans, France
R. Ramy Ratiarison
Affiliation:
CNRS – CRMHT, 45071 Orléans, France
N. Raimboux
Affiliation:
CNRS – CRMHT, 45071 Orléans, France
P. Simon
Affiliation:
CNRS – CRMHT, 45071 Orléans, France
P. Odier
Affiliation:
CNRS-Laboratoire de Cristallographie, 38402 Grenoble, France
N. Mestres
Affiliation:
ICMAB-CSIC, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
T. Puig
Affiliation:
ICMAB-CSIC, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
X. Obradors
Affiliation:
ICMAB-CSIC, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
*
a)Address all correspondence to this author.e-mail: benoit.rousseau@cnrs-orleans.fr
Get access

Abstract

A unique combination of in situ synchrotron x-ray diffraction and in situ micro-Raman spectroscopy was used to study the growth process of YBa2Cu3O6+x films obtained by metal organic decomposition using trifluoroacetate precursor on LaAlO3 substrates. The techniques give complementary information: x-ray diffraction gives insight into the structural growth, whereas micro-Raman spectroscopy gives information of the chemical composition with additional information on the texture. To perform both experiments in situ, a special high-temperature process chamber was designed.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Usoskin, A. and Freyhardt, H.C.: YBCO-coated conductors manufactured by high-rate pulsed laser deposition. MRS Bull. 29, 583 (2004).CrossRefGoogle Scholar
2.Obradors, X., Puig, T., Pomar, A., Sandiumenge, F., Pinol, S., Mestres, N., Castano, O., Coll, M., Cavallaro, A., Palau, A., Gazquez, J., Gonzalez, J.C., Gutierrez, J., Roma, N., Ricart, S., Moreto, J.M., Rossell, M.D. and van Tendeloo, G.: Chemical solution deposition: A path towards low cost coated conductors. Supercond. Sci. Technol. 17, 1055 (2004).CrossRefGoogle Scholar
3.Araki, T. and Hirabayashi, I.: Review of a chemical approach to YBa2Cu3O7− x -coated superconductors—Metalorganic deposition using trifluoroacetates. Supercond. Sci. Technol. 16, R71 (2003).CrossRefGoogle Scholar
4.Solovyov, V.F., Wiesmann, H.J., Suenaga, M. and Feenstra, R.: Thick YBa2Cu3O7 films by post annealing of the precursor by high rate e-beam deposition on SrTiO3 substrates. Physica C 309, 269 (1998).Google Scholar
5.Parmigiani, F.G., Chiarello, G., Ripamonti, N., Goretzki, H. and Roll, U.: Observation of carboxylic groups in the lattice of sintered Ba2YCu3O7−y high-T c superconductors. Phys. Rev. B 36, 7148 (1987).CrossRefGoogle ScholarPubMed
6.Gupta, A., Jagannathan, R., Cooper, E.I., Giess, E.A., Landman, J.I. and Hussey, B.W.: Superconducting oxide-films with high transition-temperature prepared from metal trifluoroacetate precursors. Appl. Phys. Lett. 52, 2077 (1988).Google Scholar
7.McIntyre, P.C., Cima, M.J. and Ng, M.F.: Metalorganic deposition of high-J c Ba2YCu3O7−x thin films from trifluoroacetate precursors onto (100) SrTiO3. J. Appl. Phys. 68, 4183 (1990).Google Scholar
8.McIntyre, P.C., Cima, M.J., Smith, J.A., Hallock, R.B., Siegal, M.P. and Phillips, J.M.: Effect of growth-conditions on the properties and morphology of chemically derived epitaxial thin films of Ba2YCu3O7−x on (001) LaAlO3. J. Appl. Phys. 71, 1868 (1992).CrossRefGoogle Scholar
9.Araki, T., Yamagiwa, K., Suzuki, K., Hirabayashi, I. and Tanaka, S.: Large area uniform ultrahigh-J c Ba2Cu3O7−x film fabricated by the metalorganic deposition method using trifluoroacetates. Supercond. Sci. Technol. 14, L21 (2001).Google Scholar
10.Rupich, M.W., Verebelyi, D.T., Zang, W., Kodenkandath, T. and Li, X.: Metalorganic deposition of YBCO films for second-generation high temperature superconducting wires. MRS Bull. 29(8), 572 (2004).CrossRefGoogle Scholar
11.Venkataraman, K., Lee, D.F., Leonard, K., Heatherly, L., Cook, S., Paranthaman, M., Mika, M. and Maroni, V.A.: Reel-to reel x-ray diffraction and Raman microscopy analysis of differentially heat-treated Y–BaF2–Cu precursor films on metre-length RABiTS. Supercond. Sci. Technol. 17, 739 (2004).Google Scholar
12.Bellet, D., Gorges, B., Dallery, A., Bernard, P., Pereio, E. and Baruchel, J.: A 1300 K furnace for in situ x-ray microtomography. J. Appl. Crystallogr. 36, 366 (2003).Google Scholar
13.Puig-Molina, A., Gorges, B. and Graafsma, H.: A 1000 °C furnace for in situ x-ray diffraction. J. Appl. Crystallogr. 34, 677 (2001).Google Scholar
14. http://www.esrf.fr/UsersAndScience/Experiments/MaterialsScience/ID15/.Google Scholar
15.Simon, P., Moulin, B., Buixaderas, E., Raimboux, N., Herault, E., Chazallon, B., Cattey, H., Magneron, N., Oswalt, J. and Hocrelle, D.: High temperatures and Raman scattering through pulsed spectroscopy and CCD detection. J. Raman Spectrosc. 34, 497 (2003).Google Scholar
16.Kircher, J., Kelly, M.K., Rashkeev, S., Alouani, M., Fuchs, D. and Cardona, M.: Anisotropy and oxygen-stoichiometry dependence of the dielectric tensor of YBa2Cu3O7−δ 0 ⩽ δ ⩽ 1). Phys. Rev. B 44, 217 (1991).CrossRefGoogle Scholar
17.Bock, A.: Laser heating of YBa2Cu3O7 films in Raman experiments. Phys. Rev. B 51, 15506 (1995).Google Scholar
18.Dieckmann, N., Kursten, R., Löhndorf, M. and Bock, A.: Epitaxial quality of c-axis and a-axis oriented YBa2Cu3O7 films: Characterization by Raman spectroscopy. Physica C 245, 212 (1995).Google Scholar
19.Gregora, I., Magneron, N., Simon, P., Luspin, Y., Raimboux, N. and Phillipot, E.: Raman study of AlPO4 (berlinite) at the α–β transition. J. Phys.: Condens. Matter 15, 4487 (2003).Google Scholar
20.Gibson, G. and Cohen, L.F.: A Raman measurement of cation disorder in YBa2Cu3O7−x thin films. Physica C 333, 139 (2000).Google Scholar
21.Iliev, M.N., Hadjiev, V.G. and Ivanov, V.G.: Raman spectroscopy of local structure and reordering processes in YBa2Cu3O7−δ-type compounds. J. Raman Spectrosc. 27, 333 (1996).Google Scholar
22.Cooper, S.L., Reznik, D., Kotz, A., Karlow, M.A., Liu, R., Klein, M.V., Lee, W.C., Gianpintzakis, J., Ginsberg, D.M., Veal, B.W. and Paulikas, A.P.: Optical studies of the a-, b-, and c-axis charge dynamics in YBa2Cu3O6+x. Phys. Rev. B 47, 8233 (1993).CrossRefGoogle Scholar