Skip to main content Accessibility help

Combinatorial search of structural transitions: Systematic investigation of morphotropic phase boundaries in chemically substituted BiFeO3

  • Daisuke Kan (a1), Christian J. Long (a2), Christian Steinmetz (a3), Samuel E. Lofland (a3) and Ichiro Takeuchi (a4)...


We review our work on combinatorial search and investigation of morphotropic phase boundaries (MPBs) in chemically substituted BiFeO3 (BFO). Utilizing the thin-film composition spread technique, we discovered that rare-earth (RE = Sm, Gd, and Dy) substitution into the A-site of the BFO lattice results in a structural phase transition from the rhombohedral to the orthorhombic phase. At the structural boundary, both the piezoelectric coefficient and the dielectric constant are substantially enhanced. It is also found that the observed MPB behavior can be universally described by the average A-site ionic radius as a critical parameter, indicating that chemical pressure effect due to substitution is the primary cause for the MPB behavior in RE-substituted BFO. Our combinatorial investigations were further extended to the A- and B-site cosubstituted BFO in the pseudoternary composition spread of (Bi1−xSmx)(Fe1−yScy)O3. Clustering analysis of structural and ferroelectric property data of the fabricated pseudoternary composition spread reveals close correlations between the structural and ferroelectric properties. We show that the evolution in structural and ferroelectric properties is controlled solely by the A-site Sm substitution and not the B-site Sc substitution.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Koinuma, H. and Takeuchi, I.: Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, 429438 (2004).
2.Potyrailo, R., Rajan, K., Stoewe, K., Takeuchi, I., Chisholm, B., and Lam, H.: Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Comb. Sci. 13, 579633 (2011).
3.Fukumura, T., Ohtani, M., Kawasaki, M., Okimoto, Y., Kageyama, T., Koida, T., Hasegawa, T., Tokura, Y., and Koinuma, H.: Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach. Appl. Phys. Lett. 77, 3426 (2000).
4.Murakami, M., Chang, K-S., Aronova, M.A., Lin, C-L., Yu, M.H., Hattrick-Simpers, J., Wuttig, M., Takeuchi, I., Gao, C., Hu, B., Lofland, S.E., Knauss, L.A., and Bendersky, L.A.: Tunable multiferroic properties in nanocomposite PbTiO3–CoFe2O4 epitaxial thin films. Appl. Phys. Lett. 87, 112901 (2005).
5.Hunter, D., Osborn, W., Wang, K., Kazantseva, N., Hattrick-Simpers, J., Suchoski, R., Takahashi, R., Young, M.L., Mehta, A., Bendersky, L.A., Lofland, S.E., Wuttig, M., and Takeuchi, I.: Giant magnetostriction in annealed Co1−xFex thin-films. Nat. Commun. 2, 518 (2011).
6.Aimon, N.M., Kim, D.H., Choi, H.K., and Ross, C.A.: Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) SrTiO3 by combinatorial pulsed laser deposition. Appl. Phys. Lett. 100, 092901 (2012).
7.Park, S-E. and Shrout, T.R.: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 (1997).
8.Guo, R., Cross, L.E., Park, S-E., Noheda, B., Cox, D.E., and Shirane, G.: Origin of the high piezoelectric response in PbZr1-xTixO3. Phys. Rev. Lett. 84, 5423 (2000).
9.Kutnjak, Z., Petzelt, J., and Blinc, R.: The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956 (2006).
10.Fu, H. and Cohen, R.E.: Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281 (2000).
11.Bellaiche, L., García, A., and Vanderbilt, D.: Electric-field induced polarization paths in Pb(Zr1-xTix)O3 alloys. Phys. Rev. B 64, 060103 (2001).
12.Takeuchi, I., Famodu, O.O., Read, J.C., Aronova, M.A., Chang, K-S., Craciunescu, C., Lofland, S.E., Wuttig, M., Wellstood, F.C., Knauss, L., and Orozco, A.: Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nat. Mater. 2, 180 (2003).
13.Cui, J., Chu, Y.S., Famodu, O.O., Furuya, Y., Hattrick-Simpers, J., James, R.D., Ludwig, A., Thienhaus, S., Wuttig, M., Zhang, Z., and Takeuchi, I.: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286 (2006).
14.Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).
15.Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M.P., Chu, Y.H., Ederer, C., Spaldin, N.A., Das, R.R., Kim, D.M., Baek, S.H., Eom, C.B., and Ramesh, R.: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823 (2006).
16.Catalan, G. and Scott, J.F.: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009).
17.Cheng, Z., Wang, X., Dou, S., Kimura, H., and Ozawa, K.: Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb codoping. Phys. Rev. B 77, 092101 (2008).
18.Yuan, G.L., Or, S.W., Liu, J.M., and Liu, Z.G.: Structural transformation and ferroelectromagnetic behavior in single-phase Bi1-xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett. 89, 052905 (2006).
19.Chu, Y.H., Zhan, Q., Yang, C-H., Cruz, M.P., Martin, L.W., Zhao, T., Yu, P., Ramesh, R., Joseph, P.T., Lin, I.N., Tian, W., and Schlom, D.G.: Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 92, 102909 (2008).
20.Khomchenko, V.A., Kiselev, D.A., Bdikin, I.K., Shvartsman, V.V., Borisov, P., Kleemann, W., Vieira, J.M., and Kholkin, A.L.: Crystal structure and multiferroic properties of Gd-substituted BiFeO3. Appl. Phys. Lett. 93, 262905 (2008).
21.Zhu, W-M., Su, L.W., Ye, Z-G., and Ren, W.: Enhanced magnetization and polarization in chemically modified multiferroic (1-x)BiFeO3-xDyFeO3 solid solution. Appl. Phys. Lett. 94, 142908 (2009).
22.Yang, C-H., Seidel, J., Kim, S.Y., Rossen, P.B., Yu, P., Gajek, M., Chu, Y.H., Martin, L.W., Holcomb, M.B., He, Q., Maksymovych, P., Balke, N., Kalinin, S.V., Baddorf, A.P., Basu, S.R., Scullin, M.L., and Ramesh, R.: Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485 (2009).
23.Karimi, S., Reaney, I.M., Han, Y., Pokorny, J., and Sterianou, I.: Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J. Mater. Sci. 44, 5102 (2009).
24.Kalantari, K., Sterianou, I., Karimi, S., Ferrarelli, M.C., Miao, S., Sinclair, D.C., and Reaney, I.M.: Ti-doping to reduce conductivity in Bi0.85Nd0.15FeO3 ceramics. Adv. Funct. Mater. 21, 3737 (2011).
25.Ishiwara, H.: Impurity substitution effects in BiFeO3 thin films-from a viewpoint of FeRAM applications. Curr. Appl. Phys. 12, 603 (2012).
26.Troyanchuk, I.O., Karpinsky, D.V., Bushinsky, M.V., Mantytskaya, O.S., Tereshko, N.V., and Shut, V.N.: Phase transitions, magnetic and piezoelectric properties of rare-earth-substituted BiFeO3 ceramics. J. Am. Ceram. Soc. 94, 4502 (2011).
27.Levin, I., Tucker, M.G., Wu, H., Provenzano, V., Dennis, C.L., Karimi, S., Comyn, T., Stevenson, T., Smith, R.I., and Reaney, I.M.: Displacive phase transitions and magnetic structures in Nd-substituted BiFeO3. Chem. Mater. 23, 2166 (2011).
28.Fujino, S., Murakami, M., Anbusathaiah, V., Lim, S-H., Nagarajan, V., Fennie, C.J., Wuttig, M., Salamanca-Riba, L., and Takeuchi, I.: Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl. Phys. Lett. 92, 202904 (2008).
29.Kan, D., Pálová, L., Anbusathaiah, V., Cheng, C-J., Fujino, S., Nagarajan, V., Rabe, K.M., and Takeuchi, I.: Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 20, 1108 (2010).
30.Kan, D., Suchoski, R., Fujino, S., and Takeuchi, I.: Combinatorial investigation of structural and ferroelectric properties of A- and B-site co-doped BiFeO3 thin films. Integr. Ferroelectr. 111, 116 (2009).
31.Cheng, C-J., Kan, D., Lim, S-H., McKenzie, W.R., Munroe, P.R., Salamanca-Riba, L.G., Withers, R.L., Takeuchi, I., and Nagarajan, V.: Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films. Phys. Rev. B 80, 014109 (2009).
32.Kan, D., Cheng, C-J., Nagarajan, V., and Takeuchi, I.: Composition and temperature-induced structural evolution in La, Sm, and Dy substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. J. Appl. Phys. 110, 014106 (2011).
33.Cheng, C-J., Kan, D., Anbusathaiah, V., Takeuchi, I., and Nagarajan, V.: Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. Appl. Phys. Lett. 97, 212905 (2010).
34.Nagarajan, V., Stanishevsky, A., Chen, L., Zhao, T., Liu, B-T., Melngailis, J., Roytburd, A.L., Ramesh, R., Finder, J., Yu, Z., Droopad, R., and Eisenbeiser, K.: Realizing intrinsic piezoresponse in epitaxial submicron lead zirconate titanate capacitors on Si. Appl. Phys. Lett. 81, 4215 (2002).
35.Kan, D. and Takeuchi, I.: Effect of substrate orientation on lattice relaxation of epitaxial BiFeO3 thin films. J. Appl. Phys. 108, 014104 (2010).
36.Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432, 84 (2004).
37.Jia, Y.Q.: Crystal radii and effective ionic radii of the rare earth ions. J. Solid State Chem. 95, 184 (1991).
38.Cheng, C-J., Borisevich, A.Y., Kan, D., Takeuchi, I., and Nagarajan, V.: Nanoscale structural and chemical properties of antipolar clusters in Sm-doped BiFeO3 ferroelectric epitaxial thin films. Chem. Mater. 22, 2588 (2010).
39.Sawaguchi, E., Maniwa, H., and Hoshino, S.: Antiferroelectric structure of lead zirconate. Phys. Rev. 83, 1078 (1951).
40.Woodward, D.I., Knudsen, J., and Reaney, I.M.: Review of crystal and domain structures in the PbZrxTi1-xO3 solid solution. Phys. Rev. B 72, 104110 (2005).
41.Karimi, S., Reaney, I.M., Levin, I., and Sterianou, I.: Nd-doped BiFeO3 ceramics with antipolar order. Appl. Phys. Lett. 94, 112903 (2009).
42.Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993).
43.Ravindran, P., Vidya, R., Kjekshus, A., Fjellvåg, H., and Eriksson, O.: Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B 74, 224412 (2006).
44.Haumont, R., Bouvier, P., Pashkin, A., Rabia, K., Frank, S., Dkhil, B., Crichton, W.A., Kuntscher, C.A., and Kreisel, J.: Effect of high pressure on multiferroic BiFeO3. Phys. Rev. B 79, 184110 (2009).
45.Guennou, M., Bouvier, P., Chen, G.S., Dkhil, B., Haumont, R., Garbarino, G., and Kreisel, J.: Multiple high-pressure phase transitions in BiFeO3. Phys. Rev. B 84, 174107 (2011).
46.Emery, S.B., Cheng, C-J., Kan, D., Rueckert, F.J., Alpay, S.P., Nagarajan, V., Takeuchi, I., and Wells, B.O.: Phase coexistence near a morphotropic phase boundary in Sm-doped BiFeO3 films. Appl. Phys. Lett. 97, 152902 (2010).
47.Baettig, P., Schelle, C.F., LeSar, R., Waghmare, U.V., and Spaldin, N.A.: Theoretical prediction of new high-performance lead-free piezoelectrics. Chem. Mater. 17, 1376 (2005).
48.Yasui, S., Uchida, H., Nakaki, H., Nishida, K., Funakubo, H., and Koda, S.: Analysis for crystal structure of Bi(Fe, Sc)O3 thin films and their electrical properties. Appl. Phys. Lett. 91, 022906 (2007).
49.Marezio, M., Remeika, J.P., and Dernier, P.D.: The crystal chemistry of the rare earth orthoferrites. Acta Crystallogr., Sect. B 26, 2008 (1970).
50.Maslen, E.N., Streltsov, V.A., and Ishizawa, N.: A synchrotron x-ray study of the electron density in SmFeO3. Acta Crystallogr., Sect. B 52, 406 (1996).
51.Belik, A.A., Iikubo, S., Kodama, K., Igawa, N., Shamoto, S., Maie, M., Nagai, T., Matsui, Y., Stefanovich, S.Y., Lazoryak, B.I., and Takayama-Muromachi, E.: BiScO3: Centrosymmetric BiMnO3-type oxide. J. Am. Chem. Soc. 128, 706 (2006).
52.Singh, M.K., Jang, H.M., Ryu, S., and Jo, M-H.: Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 88, 042907 (2006).
53.Singh, M.K., Ryu, S., and Jang, H.M.: Polarized Raman scattering of multiferroic BiFeO3 thin films with pseudo-tetragonal symmetry. Phys. Rev. B 72, 132101 (2005).
54.Venugopalan, S., Dutta, M., Ramdas, A.K., and Remeika, J.P.: Magnetic and vibrational excitations in rare-earth orthoferrites: A Raman scattering study. Phys. Rev. B 31, 1490 (1985).
55.Johnson, S.: Hierarchical clustering schemes. Psychometrika 32, 241 (1967).
56.Long, C.J., Hattrick-Simpers, J., Murakami, M., Srivastava, R.C., Takeuchi, I., Karen, V.L., and Li, X.: Rapid structural mapping of ternary metallic alloy systems using the combinatorial approach and cluster analysis. Rev. Sci. Instrum. 78, 072217 (2007).
57.Barr, G., Dong, W., and Gilmore, C.J.: High-throughput powder diffraction. II. Applications of clustering methods and multivariate data analysis. J. Appl. Crystallogr. 37, 243 (2004).
58.Barr, G., Cunningham, G., Dong, W., Gilmore, C.J., and Kojima, T.: High-throughput powder diffraction V: The use of Raman spectroscopy with and without x-ray powder diffraction data. J. Appl. Crystallogr. 42, 706 (2009).
59.Scheidtmann, J., Frantzen, A., Frenzer, G., and Maier, W.F.: A combinatorial technique for the search of solid state gas sensor materials. Meas. Sci. Technol. 16, 119 (2005).

Combinatorial search of structural transitions: Systematic investigation of morphotropic phase boundaries in chemically substituted BiFeO3

  • Daisuke Kan (a1), Christian J. Long (a2), Christian Steinmetz (a3), Samuel E. Lofland (a3) and Ichiro Takeuchi (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed