Skip to main content Accessibility help

Combinatorial nanocalorimetry

  • Patrick J. McCluskey (a1) and Joost J. Vlassak (a1)


The parallel nano-scanning calorimeter (PnSC) is a silicon-based micromachined device for calorimetric measurement of nanoscale materials in a high-throughput methodology. The device contains an array of nanocalorimeters. Each nanocalorimeter consists of a silicon nitride membrane and a tungsten heating element that also serves as a temperature gauge. The small mass of the individual nanocalorimeters enables measurements on samples as small as a few hundred nanograms at heating rates up to 104 K/s. The sensitivity of the device is demonstrated through the analysis of the melting transformation of a 25-nm indium film. To demonstrate the combinatorial capabilities, the device is used to analyze a Ni–Ti–Zr sample library. The as-deposited amorphous samples are crystallized by local heating in a process that lasts just tens of milliseconds. The martensite–austenite transformation in the Ni–Ti–Zr shape memory alloy system is analyzed and the dependence of transformation temperature and specific heat on composition is revealed.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Rodgers, J.R., Cebon, D.: Materials informatics. MRS Bull. 31, (12)975 (2006)
2.McCluskey, P.J., Vlassak, J.J.: Parallel nano-differential scanning calorimetry: A new device for combinatorial analysis of complex nano-scale material systems, Mechanics of Nanoscale Materials and Devices edited by A. Misra, J.P. Sullivan, H. Huang, K. Lu, and S. Asif (Mater. Res. Soc. Symp. Proc 924E, Warrendale, PA 2006) 0924-Z08-14
3.Amis, E.J., Xiang, X.D., Zhao, J.C.: Combinatorial materials science: What's new since Edison? MRS Bull. 27, (4)295 (2002)
4.Dar, Y.L.: High-throughput experimentation: A powerful enabling technology for the chemicals and materials industry. Macromol. Rapid Commun. 25, (1)34 (2004)
5.Koinuma, H., Takeuchi, I.: Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, (7)429 (2004)
6.Rajan, K.: Combinatorial materials sciences: Experimental strategies for accelerated knowledge discovery. Annu. Rev. Mater. Res. 38, 299 (2008)
7.Francis, M.B., Jamison, T.F., Jacobsen, E.N.: Combinatorial libraries of transition-metal complexes, catalysts and materials. Curr. Opin. Chem. Biol. 2, (3)422 (1998)
8.Meredith, J.C., Smith, A.P., Karim, A., Amis, E.J.: Combinatorial materials science for polymer thin-film dewetting. Macromolecules 33, (26)9747 (2000)
9.Takeuchi, I., Lippmaa, M., Matsumoto, Y.: Combinatorial experimentation and materials informatics. MRS Bull. 31, (12)999 (2006)
10.Cui, J., Chu, Y.S., Famodu, O.O., Furuya, Y., Hattrick-Simpers, J., James, R.D., Ludwig, A., Thienhaus, S., Wuttig, M., Zhang, Z.Y., Takeuchi, I.: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, (4)286 (2006)
11.Revaz, B., Zink, B.L., Hellman, F.: Si–N membrane-based microcalorimetry: Heat capacity and thermal conductivity of thin films. Thermochim. Acta 432, (2)158 (2005)
12.Minakov, A.A., Adamovsky, S.A., Schick, C.: Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim. Acta 432, (2)177 (2005)
13.Olson, E.A., Yu, M., Efremov, Y., Zhang, M., Zhang, Z.S., Allen, L.H.: The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat-capacity measurements of ultrathin films. J. Microelectromech. Syst. 12, (3)355 (2003)
14.Hersscher, M.: A micro differential scanning calorimetry system. Diploma Thesis, Albert-Ludwigs University, Freiburg, Germany 2003
15.Efremov, M.Y., Olson, E.A., Zhang, M., Schiettekatte, F., Zhang, Z.S., Allen, L.H.: Ultrasensitive, fast, thin-film differential scanning calorimeter. Rev. Sci. Instrum. 75, (1)179 (2004)
16.CRC Handbook of Chemistry and Physics (CRC Press, Cleveland, OH 1977)
17.Lai, S.L., Guo, J.Y., Petrova, V., Ramanath, G., Allen, L.H.: Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett. 77, (1)99 (1996)
18.Efremov, M.Y., Schiettekatte, F., Zhang, M., Olson, E.A., Kwan, A.T., Berry, R.S., Allen, L.H.: Discrete periodic melting point observations for nanostructure ensembles. Phys. Rev. Lett. 85, (17)3560 (2000)
19.Zhang, M., Efremov, M.Y., Schiettekatte, F., Olson, E.A., Kwan, A.T., Lai, S.L., Wisleder, T., Greene, J.E., Allen, L.H.: Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 62, (15)10548 (2000)
20.Kim, H.Y., Mizutani, M., Miyazaki, S.: Crystallization process and shape memory properties of Ti–Ni–Zr thin films. Acta Mater. 57, (6)1920 (2009)
21.Hsieh, S.F., Wu, S.K.: A study on lattice parameters of martensite in Ti50.5–xNi49.5Zrx shape memory alloys. J. Alloys Compd. 270, (1–2)237 (1998)
22.Otsuka, K., Ren, X.B.: Recent developments in the research of shape memory alloys. Intermetallics 7, (5)511 (1999)
23.Huang, X.Y., Ackland, G.J., Rabe, K.M.: Crystal structures and shape-memory behaviour of NiTi. Nat. Mater. 2, (5)307 (2003)
24.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, (1)279 (2000)
25.Hsieh, S.F., Wu, S.K.: Room-temperature phases observed in Ti53–xNi47Zrx high-temperature shape-memory alloys. J. Alloys Compd. 266, (1–2)276 (1998)
26.Hsieh, S.F., Wu, S.K.: A study on ternary Ti-rich TiNiZr shape memory alloys. Mater. Charact. 41, (4)151 (1998)
27.Tang, W.J.: Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti–Ni shape memory alloys. Metall. Mater. Trans. A 28, (3)537 (1997)
28.Cesari, E., Ochin, P., Portier, R., Kolomytsev, V., Koval, Y., Pasko, A., Soolshenko, V.: Structure and properties of Ti–Ni–Zr and Ti–Ni–Hf melt-spun ribbons. Mater. Sci. Eng., A 273, 738 (1999)
29.Wang, X.: Crystallization and martensitic transformation behavior of NiTi shape memory alloy thin films. Diploma Thesis, Harvard University, Cambridge, MA 2007
30.Waitz, T., Antretter, T., Fischer, F.D., Simha, N.K., Karnthaler, H.P.: Size effects on the martensitic phase transformation of NiTi nanograins. J. Mech. Phys. Solids 55, (2)419 (2007)
31.Fan, G.L., Chen, W., Yang, S., Zhu, J.H., Ren, X.B., Otsuka, K.: Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti–Ni shape memory alloys. Acta Mater. 52, (14)4351 (2004)
32.Ren, X., Miura, N., Zhang, J., Otsuka, K., Tanaka, K., Koiwa, M., Suzuki, T., Chumlyakov, Y.I.: A comparative study of elastic constants of Ti–Ni-based alloys prior to martensitic transformation. Mater. Sci. Eng., A 312, (1–2)196 (2001)
33.Waitz, T., Kazykhanov, V., Karnthaler, H.P.: Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 52, (1)137 (2004)
34.Gyobu, A., Kawamura, Y., Horikawa, H., Saburi, T.: Martensitic transformation and two-way shape memory effect of sputter-deposited Ni-rich Ti–Ni alloy films. Mater. Sci. Eng., A 273, 749 (1999)
35.Sneddon, I.N.: Fourier Transforms (McGraw-Hill, New York 1951)
36.McCluskey, P.J., Vlassak, J.J.: Nano-thermal transport array: An instrument for combinatorial measurements of heat transfer in nanoscale films. Thin Solid Films 518, 7093 (2010 DOI: 10.1016/j.tsf.2010.05.124 )
37.Jain, A., Goodson, K.E.: Measurement of the thermal conductivity and heat capacity of freestanding shape-memory thin films using the 3 omega method. J. Heat Transfer-Trans. ASME 130, (10)102402–1 (2008)
38.Andrzej, Z.A., Bogdan, R.A., Miyazaki, S.: Stress induced martensitic transformation kinetics of polycrystalline NiTi shape memory alloy. Mater. Sci. Eng., A 378, (1–2)86 (2004)
39.Mastrangelo, C.H., Tai, Y.C., Muller, R.S.: Thermophysical properties of low-residual stress, silicon-rich, LPCVD silicon nitride films. Sens. Actuators, A 21–23, 856 (1990)



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed