Skip to main content Accessibility help
×
Home

Collagen and elastin scaffold by electrospinning for skin tissue engineering applications

  • Josué Jiménez Vázquez (a1) and Eduardo San Martín Martínez (a1)

Abstract

In recent years, tissue engineering has helped to reduce hospital stays and deaths caused by skin wounds. Scaffolds are one of the main factors that influence the success of any tissue graft. Collagen is one of the main components of the extracellular matrix, and there has been much interest in new sources for application as a biomaterial. In this work, a tissue engineering scaffold was developed using the electrospinning technique. The chicken skin was used as an alternative source to obtain collagen. The combination of this collagen with elastin was successfully electrospun, and a distribution of diameters was obtained, less than 100 nm. In vitro tests showed the adhesion and proliferation of the cells, as well as an absence of cytotoxicity from non–cross-linked scaffolds and scaffolds that were cross-linked with carbonyldiimidazole. The structure and composition of the developed scaffolding provide a favorable environment for cell growth and generating a skin substitute.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: esanmartin@ipn.mx

References

Hide All
1.Hay, R.J., Augustin, M., Griffiths, C.E.M., Sterry, W., and Board of the International League of Dermatological Societies and the Grand Challenges Consultation Groups: The global challenge for skin health. Br. J. Dermatol. 172, 14691472 (2015).
2.Vig, K., Chaudhari, A., Tripathi, S., Dixit, S., Sahu, R., Pillai, S., Dennis, V., and Singh, S.: Advances in skin regeneration using tissue engineering. Int. J. Mol. Sci. 18, 789 (2017).
3.Park, Y.R., Ju, H.W., Lee, J.M., Kim, D-K., Lee, O.J., Moon, B.M., Park, H.J., Jeong, J.Y., Yeon, Y.K., and Park, C.H.: Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Int. J. Biol. Macromol. 93, 15671574 (2016).
4.Sundaramurthi, D., Krishnan, U.M., and Sethuraman, S.: Electrospun nanofibers as scaffolds for skin tissue engineering. Polym. Rev. 54, 348376 (2014).
5.Dias, J.R., Granja, P.L., and Bártolo, P.J.: Advances in electrospun skin substitutes. Prog. Mater. Sci. 84, 314334 (2016).
6.Ranjbarvan, P., Mahmoudifard, M., Kehtari, M., Babaie, A., Hamedi, S., Mirzaei, S., Soleimani, M., and Hosseinzadeh, S.: Natural compounds for skin tissue engineering by electrospinning of nylon-beta vulgaris. ASAIO J. 64, 261269 (2018).
7.Ramanathan, G., Singaravelu, S., Raja, M.D., Nagiah, N., Padmapriya, P., Ruban, K., Kaveri, K., Natarajan, T.S., Sivagnanam, U.T., and Perumal, P.T.: Fabrication and characterization of a collagen coated electrospun poly(3-hydroxybutyric acid)-gelatin nanofibrous scaffold as a soft bio-mimetic material for skin tissue engineering applications. RSC Adv. 6, 79147922 (2016).
8.Chen, F-M. and Liu, X.: Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 53, 86168 (2016).
9.Munasinghe, K.A., Schwarz, J.G., and Nyame, A.K.: Chicken collagen from law market value by-products as an alternate source. J. Food Process. 2015, 1 (2015).
10.Zhou, C., Li, Y., Yu, X., Yang, H., Ma, H., Yagoub, A.E.A., Cheng, Y., Hu, J., and Otu, P.N.Y.: Extraction and characterization of chicken feet soluble collagen. LWT–Food Sci. Technol. 74, 145153 (2016).
11.Cliche, S., Amiot, J., Avezard, C., and Gariepy, C.: Extraction and characterization of collagen with or without telopeptides from chicken skin. Poult. Sci. 82, 503509 (2003).
12.Gojkovic, Z., Marova, I., Matouskova, P., Obruca, S., and Miloslav, P.: Use of ultrasonic spectroscopy and viscosimetry for the characterization of chicken skin collagen in comparison with collagens from other animal tissues. Prep. Biochem. Biotechnol. 44, 761771 (2014).
13.Buttafoco, L., Kolkman, N.G., Engbers-Buijtenhuijs, P., Poot, A.A., Dijkstra, P.J., Vermes, I., and Feijen, J.: Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27, 724734 (2006).
14.Rnjak-Kovacina, J., Wise, S.G., Li, Z., Maitz, P.K.M., Young, C.J., Wang, Y., and Weiss, A.S.: Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. Acta Biomater. 8, 37143722 (2012).
15.Chaudhari, A., Vig, K., Baganizi, D., Sahu, R., Dixit, S., Dennis, V., Singh, S., and Pillai, S.: Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. Int. J. Mol. Sci. 17, 1974 (2016).
16.Chua, A.W.C., Khoo, Y.C., Tan, B.K., Tan, K.C., Foo, C.L., and Chong, S.J.: Skin tissue engineering advances in severe burns: Review and therapeutic applications. Burns Trauma. 4, 3 (2016).
17.Ho, J., Walsh, C., Yue, D., Dardik, A., and Cheema, U.: Current advancements and strategies in tissue engineering for wound healing: A comprehensive review. Adv. Wound Care 6, 191209 (2017).
18.Sekuła, M. and Zuba-Surma, E.K.: Biomaterials and stem cells: Promising tools in tissue engineering and biomedical applications. In Biomaterials in Regenerative Medicine (InTech, 2018); p. 361.
19.Lin, Y.K. and Liu, D.C.: Effects of pepsin digestion at different temperatures and times on properties of telopeptide-poor collagen from bird feet. Food Chem. 94, 621625 (2006).
20.Muyonga, J.H., Cole, C.G.B., and Duodu, K.G.: Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem. 86, 325332 (2004).
21.Pati, F., Adhikari, B., and Dhara, S.: Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour. Technol. 101, 37373742 (2010).
22.Singh, P., Benjakul, S., Maqsood, S., and Kishimura, H.: Isolation and characterisation of collagen extracted from the skin of striped catfish (Pangasianodon hypophthalmus). Food Chem. 124, 97105 (2011).
23.Woo, J-W., Yu, S-J., Cho, S-M., Lee, Y-B., and Kim, S-B.: Extraction optimization and properties of collagen from yellowfin tuna (Thunnus albacares) dorsal skin. Food Hydrocolloids 22, 879887 (2008).
24.Doyle, B.B., Bendit, E.G., and Blout, E.R.: Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers 14, 937957 (1975).
25.Payne, K.J. and Veis, A.: Fourier transform ir spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers 27, 17491760 (1988).
26.Surewicz, W.K. and Mantsch, H.H.: New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 952, 115130 (1988).
27.Plepis, A.M.D.G., Goissis, G., and Das-Gupta, D.K.: Dielectric and pyroelectric characterization of anionic and native collagen. Polym. Eng. Sci. 36, 29322938 (1996).
28.Mina, Y., MohammadReza, K., Ruhollah Mehdinavaz, A., Keyvan, S., and Masoud, R.: Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design. Curr. Chem. Lett. 3, 175182 (2014).
29.Ortega-Arroyo, L., Martin-Martinez, E.S., Aguilar-Mendez, M.A., Cruz-Orea, A., Hernandez-Pérez, I., and Glorieux, C.: Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response. Starch-Stärke. 65, 814821 (2013).
30.Bosman, F.T. and Stamenkovic, I.: Functional structure and composition of the extracellular matrix. J. Pathol. 200, 423428 (2003).
31.Lee, S.J., Yoo, J.J., Lim, G.J., Atala, A., and Stitzel, J.: In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J. Biomed. Mater. Res., Part A 83, 9991008 (2007).
32.Su Rho, K., Jeong, L., Lee, G., Seo, B-M., Jeong Park, Y., Hong, S-D., Roh, S., Jin Cho, J., Park, W.H., and Min, B-M.: Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27, 14521461 (2006).
33.Gough, J.E., Scotchford, C.A., and Downes, S.: Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J. Biomed. Mater. Res. 61, 121130 (2002).
34.Jocic, S., Mestres, G., and Tenje, M.: Fabrication of user-friendly and biomimetic 1,1′-carbonyldiimidazole cross-linked gelatin/agar microfluidic devices. Mater. Sci. Eng., C 76, 11751180 (2017).
35.Koch, H., Hammer, N., Ossmann, S., Schierle, K., Sack, U., Hofmann, J., Wecks, M., and Boldt, A.: Tissue engineering of ureteral grafts: Preparation of biocompatible crosslinked ureteral scaffolds of porcine origin. Front. Bioeng. Biotechnol. 3, 116 (2015).
36.Haugh, M.G., Murphy, C.M., McKiernan, R.C., Altenbuchner, C., and O’Brien, F.J.: Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng., Part A 17, 12011208 (2011).
37.Powell, H.M. and Boyce, S.T.: EDC cross-linking improves skin substitute strength and stability. Biomaterials 27, 58215827 (2006).
38.Shan, Y-H., Peng, L-H., Liu, X., Chen, X., Xiong, J., and Gao, J-Q.: Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. Int. J. Pharm. 479, 291301 (2015).
39.Zeybek, B., Duman, M., and Ürkmez, A.S.: Electrospinning of nanofibrous polycaprolactone (PCL) and collagen-blended polycaprolactone for wound dressing and tissue engineering. Usak Univ. J. Mater. Sci. 3, 121 (2014).
40.Li, M., Mondrinos, M.J., Chen, X., Gandhi, M.R., Ko, F.K., and Lelkes, P.I.: Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J. Biomed. Mater. Res., Part A 79, 963973 (2006).

Keywords

Collagen and elastin scaffold by electrospinning for skin tissue engineering applications

  • Josué Jiménez Vázquez (a1) and Eduardo San Martín Martínez (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed