Skip to main content Accessibility help
×
Home

Cold sintering: Current status and prospects

  • Jon-Paul Maria (a1), Xiaoyu Kang (a1), Richard D. Floyd (a1), Elizabeth C. Dickey (a1), Hanzheng Guo (a2), Jing Guo (a2), Amanda Baker (a2), Shuichi Funihashi (a3) and Clive A. Randall (a2)...

Abstract

This manuscript describes, defines, and discusses the process of cold sintering, which can consolidate a broad set of inorganic powders between room temperature and 300 °C using a standard uniaxial press and die. This temperature range is well below that needed for appreciable bulk diffusion, indicating immediately the distinction from the well-known and thermally driven analogue, allowing for an unconventional method for densifying these inorganic powders. Sections of this report highlight the general background and history of cold sintering, the current set of known compositions that exhibit compatibility with this process, the basic experimental techniques, the current understanding of physical mechanisms necessary for densification, and finally opportunities and challenges to expand the method more generically to other systems. The newness of this approach and the potential for revolutionary impact on traditional methods of powder-based processing warrants this discussion despite a nascent understanding of the operative mechanisms.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cold sintering: Current status and prospects
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cold sintering: Current status and prospects
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cold sintering: Current status and prospects
      Available formats
      ×

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: car4@psu.edu

Footnotes

Hide All

Contributing Editor: Eugene Medvedovski

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes

References

Hide All
1. Rahaman, M.N.: Sintering of Ceramics (CRC Press, Baca Raton, 2008).
2. German, R.M.: Sintering Theory and Practice (Wiley, New York City, 1996).
3. Kang, S-J.L.: Sintering: Densification, Grain Growth, and Microstructure (Butterworth-Heinemann, Oxford, 2005).
4. Cologna, M., Rashkova, B., and Raj, R.: Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 93(11), 3556 (2010).
5. Shen, Z., Zhao, Z., Peng, H., and Nygren, M.: Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening. Nature 417, 266 (2002).
6. Chaim, R., Shlayer, A., and Estournes, C.: Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering. J. Eur. Ceram. Soc. 29(1), 91 (2009).
7. Valdez-Nava, Z., Guillemet-Fritsch, S., Tenailleau, C., Lebey, T., Durand, B., and Chane-Ching, J.Y.: Colossal dielectric permittivity of BaTiO3-based nanocrystalline ceramics sintered by spark plasma sintering. J. Electroceram. 22(1–3), 238 (2009).
8. Elissalde, C., Maglione, M., and Estournes, C.: Tailoring dielectric properties of multilayer composites using spark plasma sintering. J. Am. Ceram. Soc. 90(3), 973 (2007).
9. Shomrat, N., Baltianski, S., Randall, C.A., and Tsur, Y.: Flash sintering of potassium-niobate. J. Eur. Ceram. Soc. 35(7), 2209 (2015).
10. Zhao, Z., Buscaglia, V., Bowen, P., and Nygren, M.: Spark plasma sintering of nano-crystalline ceramics. Key Eng. Mater. 264–268, 2297 (2004).
11. Yamasaki, N., Yanagisawa, K., Nishioka, M., and Kanahara, S.: A hydrothermal hot-pressing method: Apparatus and application. J. Mater. Sci. Lett. 5, 355 (1986).
12. Guo, J., Guo, H., Baker, A.L., Lanagan, M.T., Kupp, E.R., Messing, G.L., and Randall, C.A.: Cold sintering: A paradigm shift for processing and integration of ceramics. Angew. Chem., Int. Ed. 55(38), 11457 (2016).
13. Guo, H., Baker, A., Guo, J., Randall, C.A., and Johnson, D.: Cold sintering process: A novel technique for low-temperature ceramic processing of ferroelectrics. J. Am. Ceram. Soc. 99(11), 3489 (2016).
14. Guo, H., Baker, A., Guo, J., and Randall, C.A.: Protocol for ultralow-temperature ceramic sintering: An integration of nanotechnology and the cold sintering process. ACS Nano 10(11), 10606 (2016).
15. Guo, H., Guo, J., Baker, A., and Randall, C.A.: Hydrothermal-assisted cold sintering process: A new guidance for low-temperature ceramic sintering. ACS Appl. Mater. Interfaces 8(32), 20909 (2016).
16. Baker, A., Guo, H., Guo, J., and Randall, C.: Utilizing the cold sintering process for flexible-printable electroceramic device fabrication. J. Am. Ceram. Soc. 99(10), 3202 (2016).
17. Guo, J., Baker, A.L., Guo, H., Lanagan, M., and Randall, C.A.: Cold sintering process: A new era for ceramic packaging and microwave device development. J. Am. Ceram. Soc. 7, 1 (2016).
18. Guo, J., Guo, H., Heidary, D.S.B., Funahashi, S., and Randall, C.A.: Semiconducting properties of cold sintered V2O5 ceramics and Co-sintered V2O5-PEDOT: PSS composites. J. Eur. Ceram. Soc. 37(4), 1529 (2016).
19. Guo, J., Berbano, S.S., Guo, H., Baker, A.L., Lanagan, M.T., and Randall, C.A.: Cold sintering process of composites: Bridging the processing temperature gap of ceramic and polymer materials. Adv. Funct. Mater. 26(39), 7115 (2016).
20. Guo, H., Guo, J., Baker, A., and Randall, C.A.: Cold sintering process for ZrO2-based ceramics: Significantly enhanced densification evolution in yttria-doped ZrO2 . J. Am. Ceram. Soc. 100(2), 491 (2016).
21. Guo, H., Bayer, T.J.M., Guo, J., Baker, A., and Randall, C.A.: Cold sintering process for 8 mol% Y2O3-stabilized ZrO2 ceramics. J. Eur. Ceram. Soc. 37(5), 2303 (2017).
22. Kähäri, H., Teirikangas, M., Juuti, J., and Jantunen, H.: Dielectric properties of lithium molybdate ceramic fabricated at room temperature. J. Am. Ceram. Soc. 97(11), 3378 (2014).
23. Kähäri, H., Teirikangas, M., Juuti, J., and Jantunen, H.: Improvements and modifications to room-temperature fabrication method for dielectric Li2MoO4 ceramics. J. Am. Ceram. Soc. 98(3), 687 (2015).
24. Kähäri, H., Teirikangas, M., Juuti, J., and Jantunen, H.: Room-temperature fabrication of microwave dielectric Li2MoO4–TiO2 composite ceramics. Ceram. Int. 42(9), 11442 (2016).
25. Randall, C.A., Guo, J., Guo, H., Baker, A., and Lanagan, M.T. (The Penn State Research Foundation, assignee): Cold Sintering Ceramics and Composites. U.S. Provisional Patent Service Number 62/234 (2015).
26. Funahashi, S., Guo, J., Guo, H., Wang, K., Baker, A.L., Shiratsuyu, K., and Randall, C.A.: Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics. J. Am. Ceram. Soc. 100(2), 546 (2017).
27. Berbano, S.S., Guo, J., Guo, H., Lanagan, M.T., and Randall, C.A.: Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. J. Am. Ceram. Soc., 100(5), 2123 (2017).
28. Induja, I.J. and Sebastian, M.T.: Microwave dielectric properties of mineral sillimanite obtained by conventional and cold sintering process. J. Eur. Ceram. Soc. 37(5), 2143 (2017).
29. De Silva, P., Bucea, L., Sirivivatnanon, V., and Moorehead, D.R.: Carbonate binders by “cold sintering” of calcium carbonate. J. Mater. Sci. 42(16), 6792 (2007).
30. Yamasaki, N., Tang, W., and Ke, J.: Low-temperature sintering of calcium carbonate by a hydrothermal hot-pressing technique. J. Mater. Sci. Lett. 11(13), 934 (1992).
31. Yanagisawa, K., Ioku, K., and Yamasaki, N.: Formation of anatase porous ceramics by hydrothermal hot-pressing of amorphous titania spheres. J. Am. Ceram. Soc. 80(5), 1303 (1997).
32. Yanagisawa, K., Ioku, K., and Yamasaki, N.: Pore size control of porous silica ceramics by hydrothermal hot-pressing. J. Ceram. Soc. Jpn. 102(1190), 966 (1994).
33. Xie, Y., Yin, S., Yamane, H., Hashimoto, T., and Sato, T.: Low temperature sintering and color of a new compound Sn1.24Ti1.94O3.66(OH)1.50F1.42 . Solid State Sci. 11(9), 1703 (2009).
34. Bouville, F. and Studart, A.R.: Geologically-inspired strong bulk ceramics made with water at room temperature. Nat. Commun. 8, 14655 (2017).
35. Clark, I.J., Takeuchi, T., Ohtori, N., and Sinclair, D.C.: Hydrothermal synthesis and characterisation of perovskite. J. Mater. Chem. 9(1), 83 (1999).
36. Hu, M.Z.C., Kurian, V., Payzant, E.A., Rawn, C.J., and Hunt, R.D.: Wet-chemical synthesis of monodispersed barium titanate particles—Hydrothermal conversion of TiO2 microspheres to nanocrystalline BaTiO3 . Powder Technol. 110(1–2), 2 (2000).
37. Dutta, P.K., Asiaie, R., Akbar, S.A., and Zhu, W.: Hydrothermal synthesis and dielectric properties of tetragonal BaTiO3 . Chem. Mater. 6(9), 1542 (1994).
38. Yoshimura, M., Yoo, S-E., Hayashi, M., and Ishizawa, N.: Preparation of BaTiO3 thin film by hydrothermal electrochemical method. Jpn. J. Appl. Phys. 28(11), 2007 (1989).
39. Akyıldız, H., Casper, M., Aygün, S., Lam, P., and Maria, J.: Hydrothermal BaTiO3 thin films from nanostructure Ti templates. J. Mater. Res. 26(4), 592 (2011).
40. Vakifahmetoglu, C., Anger, J.F., Atakan, V., Quinn, S., Gupta, S., Li, Q., Tang, L., and Riman, R.E.: Reactive hydrothermal liquid-phase densification (rHLPD) of ceramics—A study of the BaTiO3[TiO2] composite system. J. Am. Ceram. Soc. 99, 3893 (2016).
41. Hirano, S-I. and Somiya, S.: Hydrothermal reaction sintering of pure Cr2O3 . J. Am. Ceram. Soc. 59(11–12), 534 (1976).
42. Anagisawa, K., Sasaki, M., Nishioka, M., Ioku, K., and Yamasaki, N.: Preparation of sintered compacts of anatase by hydrothermal hot-pressing. J. Mater. Sci. Lett. 13, 765 (1994).
43. Dargatz, B., Gonzalez-Julian, J., Bram, M., Jakes, P., Besmehn, A., Schade, L., Röder, R., Ronning, C., and Guillon, O.: FAST/SPS sintering of nanocrystalline zinc oxide-part I: Enhanced densification and formation of hydrogen-related defects in presence of adsorbed water. J. Eur. Ceram. Soc. 36(5), 1207 (2016).
44. Haynes, W.M.: CRC Handbook of Chemistry and Physics, 97th ed. (CRC Press, Boca Raton, 2016).
45. Van Santen, R.A.: The Ostwald step rule. J. Phys. Chem. 88(6), 5768 (1984).
46. Velegol, D., Garg, A., Guha, R., Kar, A., and Kumar, M.: Origins of concentration gradients for diffusiophoresis. Soft Matter 12(21), 4686 (2016).
47. Senda, T. and Bradt, R.C.. Grain growth in sintered ZnO and ZnO–Bi2O3 ceramics. J. Am. Ceram. Soc. 1, 106 (1990).
48. Vandiver, P.B., Soffer, O., Klima, B., Svoboda, J., Vandiver, P.B., Soffer, O., Klima, B., and Svoboda, J.: The origins of ceramic technology at dolni věstonice, czechoslovakia. Science 246(4933), 1002 (2017).

Keywords

Cold sintering: Current status and prospects

  • Jon-Paul Maria (a1), Xiaoyu Kang (a1), Richard D. Floyd (a1), Elizabeth C. Dickey (a1), Hanzheng Guo (a2), Jing Guo (a2), Amanda Baker (a2), Shuichi Funihashi (a3) and Clive A. Randall (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed