Skip to main content Accessibility help

Chrysanthemum like carbon nanofiber foam architectures for supercapacitors

  • Wei Wang (a1), Shirui Guo (a2), Mihrimah Ozkan (a3) and Cengiz S. Ozkan (a4)


Three-dimensional (3D) chrysanthemum-like carbon nanofiber (CCNF) foam architectures were synthesized on highly porous nickel foam via a one-step ambient pressure chemical vapor deposition process by introducing a mixture of precursor gases (H2 and C2H2). The as-synthesized 3D foam architectures were characterized by scanning electron microscopy and transmission electron microscopy, which demonstrate high porosity and a densely packed nature of the hierarchical carbon nanostructures. Symmetrical electrochemical double-layer capacitors were fabricated using electrodes based on the CCNF foam architectures. Cyclic voltammetry, charge–discharge measurements, and electrochemical impedance spectroscopy were conducted to determine the performance metrics. The supercapacitors (SCs) demonstrate a high areal capacitance of 1.37 F/cm2 (gravimetric specific capacitance: 23.83 F/g), which leads to superior values for per area energy density (0.19 Wh/cm2) and power density (141.77 W/cm2). In addition, capacitance retention of ∼100% over 13,000 charge–discharge cycles demonstrates the high electrochemical stability of this type of carbon nanostructure foam for high areal capacitance SCs.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Simon, P. and Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845854 (2008).
2.Wu, Z.S., Ren, W., Wang, D.W., Li, F., Liu, B., and Cheng, H.M.: High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 58355842 (2010).
3.Hu, L., Choi, J.W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.F., and Cui, Y.: Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. U.S.A 106, 2149021494 (2009).
4.Lang, X., Hirata, A., Fujita, T., and Chen, M.: Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232236 (2011).
5.Stoller, M.D., Park, S.J., Zhu, Y.W., An, J.H., and Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 34983502 (2008).
6.Stoller, M.D. and Ruoff, R.S.: Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3, 12941301 (2010).
7.Pandolfo, A.G. and Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157, 1127 (2006).
8.Yu, A.P., Roes, I., Davies, A., and Chen, Z.W.: Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl. Phys. Lett. 96, 253105-1–253105-3 (2010).
9.Murali, S., Dreyer, D.R., Valle-Vigon, P., Stoller, M.D., Zhu, Y., Morales, C., Fuertes, A.B., Bielawski, C.W., and Ruoff, R.S.: Mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors. Phys. Chem. Chem. Phys. 13, 26522655 (2011).
10.Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 39063924 (2010).
11.McDonough, J.R., Choi, J.W., Yang, Y., La Mantia, F., Zhang, Y., and Cui, Y.: Carbon nanofiber supercapacitors with large areal capacitances. Appl. Phys. Lett. 95, 243109–243109-3 (2009).
12.Wang, W., Guo, S., Penchev, M., Zhong, J., Lin, J., Bao, D., Vullev, V., Ozkan, M., and Ozkan, C.S.: Hybrid low resistance ultracapacitor electrodes based on 1-pyrenebutyric acid functionalized centimeter-scale graphene sheets. J. Nanosci. Nanotechnol. 12, 69136920 (2012).
13.Wang, W., Guo, S., Penchev, M., Ruiz, I., Bozhilov, K.N., Yan, D., Ozkan, M., and Ozkan, C.S.: Three dimensional few-layer graphene-carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy (2012).
14.Frackowiak, E.: Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 17741785 (2007).
15.Ye, J.S., Cui, H.F., Liu, X., Lim, T.M., Zhang, W.D., and Sheu, F.S.: Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small 1, 560565 (2005).
16.Weng, Z., Su, Y., Wang, D-W., Li, F., Du, J., and Cheng, H-M.: Graphene–cellulose paper flexible supercapacitors. Adv. Energy Mater. 1, 917922 (2011).
17.Chinthaginjala, J.K., Thakur, D.B., Seshan, K., and Lefferts, L.: How carbon-nano-fibers attach to Ni foam. Carbon 46, 16381647 (2008).
18.Yan, X., Tai, Z., Chen, J., and Xue, Q.: Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. Nanoscale 3, 212216 (2011).
19.Talapatra, S., Kar, S., Pal, S.K., Vajtai, R., Ci, L., Victor, P., Shaijumon, M.M., Kaur, S., Nalamasu, O., and Ajayan, P.M.: Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1, 112116 (2006).
20.Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian, W., and Wei, F.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 37233728 (2010).
Type Description Title
Supplementary materials

Wang Supplementary Material

 Word (254 KB)
254 KB

Chrysanthemum like carbon nanofiber foam architectures for supercapacitors

  • Wei Wang (a1), Shirui Guo (a2), Mihrimah Ozkan (a3) and Cengiz S. Ozkan (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed