Skip to main content Accessibility help

Chitosan-poly(acrylic acid) complex modified paramagnetic Fe3O4 nanoparticles for camptothecin loading and release

  • Aiping Zhu (a1), Xiadan Luo (a1) and Sheng Dai (a2)


The stable superparamagnetic colloidal suspension of chitosan-poly(acrylic acid) (CS-PAA)/Fe3O4 nanoparticles was synthesized by graft copolymerization AA on the surface of CS stabilized Fe3O4 nanoparticles. The size, size distribution, structure, and magnetic properties of the resultant CS-PAA/Fe3O4 nanoparticles were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), dynamic light scattering, Fourier transform infrared spectroscopy, x-ray diffraction, and vibrating sample magnetometry (VSM). FE-SEM and TEM showed the spherelike morphology of CS-PAA/Fe3O4 nanoparticles with their diameter ranging from 15 to 60 nm. VSM measurements indicated that CS-PAA/Fe3O4 nanoparticles preserved the superparamagnetism. CS-PAA complex was proved to be a good stabilizer to prepare the well-dispersed suspension of superparamagnetic Fe3O4 nanoparticles. The stabilizing mechanisms were attributed to the electrostatic repulsion and steric hindrance. The controlled release of entrapped camptothecin from these magnetic nanoparticles was studied and the release mechanism was analyzed.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Dyal, A., Loos, K., Noto, M., Chang, S.W., Spagnoli, C., Shafi, K.V.P.M., Ulman, A., Cowman, M., and Gross, R.A.: Activity of Candida rugosa lipase immobilized on g-Fe2O3 magnetic nanoparticles. J. Am. Chem. Soc. 125, 1684 (2003).
2Guo, Q., Teng, X., Rahman, S., and Yang, H.: Patterned Langmuir–Blodgett films of monodisperse nanoparticles of iron oxide using soft lithography. J. Am. Chem. Soc. 125, 630 (2003).
3Sun, S., Murray, C.B., Weller, D., Folks, L., and Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000).
4Maclachlan, H.J., Ginzburg, M., Coombs, N., Coyle, T.W., Raju, N.P., Greedan, J.E., Ozin, G.A., and Manners, I.: Shaped ceramics with tunable magnetic properties from metal-containing polymers. Science 287, 1460 (2000).
5Sieben, S., Bergemann, C., Lubbe, A., Brockmann, B., and Rescheleit, D.: Comparison of different particles and methods for magnetic isolation of circulating tumor cells. J. Magn. Magn. Mater. 225, 175 (2001).
6Gomez-Lopera, S.A., Plaza, R.C., and Delgado, A.V.: Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J. Colloid Interface Sci. 240, 40 (2001).
7Sonvico, F., Mornet, S., Vasseur, S., Dubernet, C., Jaillard, D., Degrouard, J., Hoebeke, J., Duguet, E., Colombo, P., and Couvreur, P.: Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: Synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem. 16, 1181 (2005).
8Wunderbaldinger, P., Josephson, L., and Weissleder, R.: Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjugate Chem. 13, 264 (2002).
9Kim, D.K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., and Muhammed, M.: Characterization and MRI study of surfactantcoated superparamagnetic nanoparticles administered into the rat brain. J. Magn. Magn. Mater. 225, 256 (2001).
10Morishita, N., Nakagami, H., Morishita, R., Takeda, S., Mishima, F., Terazono, B., Nishijima, S., Kaneda, Y., and Tanaka, N.: Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-evector. Biochem. Biophys. Res. Commun. 334, 1121 (2005).
11Shen, L., Laibinis, P.E., and Hatton, T.A.: Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces. Langmuir 15, 447 (1999).
12Kim, D.K., Mikhaylova, M., Zhang, Y., and Muhammed, M.: Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater. 15, 1617 (2003).
13Harris, L.A., Goff, J.D., Carmichael, A.Y., Riffle, J.S., Harburn, J.J., St. Pierre, T.G., and Saunders, M.: Magnetite nanoparticle dispersions stabilized with triblockcopolymers. Chem. Mater. 15, 1367 (2003).
14Wan, S., Zheng, Y., Liu, Y., Yan, H., and Liu, K.: Fe3O4 nanoparticles coated with homopolymers of glycerol mono(meth)acrylate and their block copolymers. J. Mater. Chem. 15, 3424 (2005).
15Wan, S., Huang, J., Yan, H., and Liu, K.: Sized-controlled preparation of magnetic nanoparticles in the presence of graft copolymers. J. Mater. Chem. 16, 298 (2006).
16Gupta, A.K. and Gupta, M.: Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26, 1565 (2005).
17Berry, C.C., Wells, S., Charles, S., and Curtis, A.S.G.: Dextran and albumin derivatised iron oxide nanoparticles: Influence on fibroblasts in vitro. Biomaterials 24, 4551 (2003).
18Berry, C.C., Wells, S., Charles, S., Aitchison, G., and Curtis, A.S.G.: Cell response to dextran-derivatised iron oxide nanoparticles post internalization. Biomaterials 25, 5405 (2004).
19Kim, D.K., Mikhaylova, M., Wang, F.H., Kehr, J., Bjelke, B., Zhang, Y., Tsakalakos, T., and Muhammed, M.: Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem. Mater. 15, 4343 (2003).
20Mikhaylova, M., Kim, D.K., Berry, C.C., Zagorodni, A., Toprak, M., Curtis, A.S.G., and Muhammed, M.: BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem. Mater. 16, 2344 (2004).
21Mao, H.Q., Roy, K., Troung-Le, V.L., Janes, K.A., Lin, K.Y., and Wang, Y.: Chitosan-DNA nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency. J. Controlled Release 70, 399 (2001).
22Yoshinori, K., Hiraku, O., and Yoshiharu, M.: Evaluation of N-succinyl-chitosan as a systemic long-circulating polymer. Biomaterials 21, 1579 (2000).
23Illum, L., Jorgensen, H., Bisgaard, H., Krogsgaard, O., and Rossing, N.: Bioadhesive microspheres as a potential nasal drug delivery system. Int. J. Pharm. 39, 189 (1987).
24Zhu, A.P., Yuan, L.H., and Liao, T.Q.: Suspension of Fe3O4 nanoparticles stabilized by chitosan and O-carboxymethylchitosan. Int. J. Pharm. 350, 361 (2008).
25Hu, Y., Chen, Y., Chen, Q., Zhang, L.Y., Jiang, X.Q., and Yang, C.Z.: Synthesis and stimuli-responsive properties of chitosan/poly (acrylic acid) hollow nanospheres. Polymer (Guildf.) 46, 12703 (2005).
26Ding, Y., Hu, Y., Jiang, X.Q., Zhang, L.Y., and Yang, C.Z.: Polymer-monomer pairs as a reaction system for the synthesis of magnetic Fe3O4-polymer hybrid hollow nanospheres. Angew. Chem. Int. Ed. 43, 6369 (2004).
27Zhang, L.Y., Yang, M., Wang, Q., Li, Y.L., Guo, R., Jiang, X.Q., Yang, C.Z., and Liu, B.R.: 10-Hydroxycamptothecin loaded nanoparticles: Preparation and antitumor activity in mice. J. Controlled Release 119, 153 (2007).
28Zhu, A.P., Liu, J.H., and Ye, W.H.: Preparation of the well-disperse effective loading and controlled release of camptothecin by O-carboxymethylchitosan aggregates. Carbohydr. Polym. 63, 89 (2006).
29Wu, Y., Guo, J., Yang, W.L., Wang, C.C., and Fu, S.K.: Preparation and characterization of chitosan-poly(acrylic acid) polymer magnetic microspheres. Polymer (Guildf.) 471, 5287 (2006).
30Ma, Z.Y., Guan, Y.P., and Liu, H.Z.: Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups. J. Polym. Sci., Part A: Polym. Chem. 43, 3433 (2005).


Related content

Powered by UNSILO

Chitosan-poly(acrylic acid) complex modified paramagnetic Fe3O4 nanoparticles for camptothecin loading and release

  • Aiping Zhu (a1), Xiadan Luo (a1) and Sheng Dai (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.