Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-09T12:24:59.823Z Has data issue: false hasContentIssue false

Chemical structure and physical properties of diamond-like amorphous carbon films prepared by magnetron sputtering

Published online by Cambridge University Press:  31 January 2011

N-H. Cho
Affiliation:
Lawrence Berkeley Laboratory, One Cyclotron Road, Berkeley, California 94720
K. M. Krishnan
Affiliation:
Lawrence Berkeley Laboratory, One Cyclotron Road, Berkeley, California 94720
D. K. Veirs
Affiliation:
Lawrence Berkeley Laboratory, One Cyclotron Road, Berkeley, California 94720
M. D. Rubin
Affiliation:
Lawrence Berkeley Laboratory, One Cyclotron Road, Berkeley, California 94720
C. B. Hopper
Affiliation:
Lawrence Berkeley Laboratory, One Cyclotron Road, Berkeley, California 94720
B. Bhushan
Affiliation:
Lawrence Berkeley Laboratory, One Cyclotron Road, Berkeley, California 94720
D. B. Bogy
Affiliation:
Computer Mechanics Laboratory, Department of Mechanical Engineering, University of Berkeley, California 94720
Get access

Abstract

Thin films of amorphous carbon (a–C) and amorphous hydrogenated carbon (a–C:H) were prepared using magnetron sputtering of a graphite target. The chemical structures of the films were characterized using electron energy loss spectroscopy (EELS) and Raman spectroscopy. The mass density, hardness, residual stress, optical band gap, and electrical resistivity were determined, and their relation to the film's chemical structure are discussed. It was found that the graphitic component increases with increasing sputtering power density. This is accompanied by a decrease in the electrical resistivity, optical band gap, mass density, and hardness. Increasing the hydrogen content in the sputtering gas mixture results in decreasing hardness (14 GPa to 3 GPa) and mass density, and increasing optical band gap and electrical resistivity. The variation in the physical properties and chemical structures of these films can be explained in terms of the changes in the volume of sp2-bonded clusters in the a–C films and changes in the termination of the graphitic clusters and sp3-bonded networks by hydrogen in the a–C:H films.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Meyerson, B. and Smith, F.W., J. Non-Cryst. Solids 35/36, 435 (1980).Google Scholar
2Andersson, L.P., Thin Solid Films 86, 193 (1981).CrossRefGoogle Scholar
3Bubenzer, A., Dischler, B., Brandt, G., and Koidl, P., J. Appl. Phys. 54, 4590 (1983).Google Scholar
4Mori, T. and Namba, Y., J. Vac. Sci. Technol. A1, 23 (1983).Google Scholar
5McKenzie, D.R., McPhedran, R.C., Botten, L.C., Savvides, N., and Netterfield, R. P., Appl. Opt. 21, 3615 (1982).Google Scholar
6Kurokawa, H., Mitani, T., and Yonezawa, T., IEEE Transactions on Magnetics, Mag-23, 5 (1987).CrossRefGoogle Scholar
7Weissmantel, C., Proc. EMRS Meet., 49 (1987).Google Scholar
8Vidano, R.P. and Fischbach, D.B., Solid State Commun. 39, 341 (1981).CrossRefGoogle Scholar
9Tsai, H-C., Bogy, D.B., Kundmann, M.K., Veirs, D.K., Hilton, M.R., and Meyer, S. T., J. Vac. Sci. Technol. A6, 2307 (1988).Google Scholar
10Beny-Bassez, C. and Rovzavd, J. N., Scanning Electron Microscopy, 119 (1985).Google Scholar
11Lespade, P., Al-Jishi, R., and Dresselhaus, M. S., Carbon 20 (5), 427 (1982).CrossRefGoogle Scholar
12Dillon, R.O., Woollam, J.A., and Katkanant, V., Phys. Rev. B 29, 3482 (1984).CrossRefGoogle Scholar
13Richter, A., Scheibe, H-J., Pompe, W., Brzezinka, K-W., and Muhling, I., J. Non-Cryst. Solids 88, 131 (1986).Google Scholar
14Beeman, D., Silverman, J., Lynds, R., and Anderson, M. R., Phys. Rev. B 30, 870 (1984).Google Scholar
15Fink, J., Muller-Heinzerling, T., Pfluger, J., Bubenzer, A., Koidl, P., and Crecelius, G., Solid State Commun. 47, 887 (1983).CrossRefGoogle Scholar
16Fink, J., Muller-Heinzerling, T., Pfluger, J., Dischler, B., Koidl, D., Bubenzer, A., and San, R.E., Phys. Rev. B 30, 4713 (1984).Google Scholar
17Jarman, R.H., Ray, G.J., Stanley, R.W., and Izajac, G.W., Appl. Phys. Lett. 49 (17), 1065 (1986).Google Scholar
18Gao, C., Wang, Y. Y., Ritter, A. L., and Dennison, J. R., Phys. Rev. Lett. 62 (8), 945 (1989).CrossRefGoogle Scholar
19Jansen, F., Machonkin, M., Kaplan, S., and Hark, S., J. Vac. Sci. Technol. A3 (3), 605 (1985).CrossRefGoogle Scholar
20Grill, A., Meyerson, B.S., Patel, V.V., Reimer, J.A., and Petrich, M.A., J. Appl. Phys. 61 (8), 2874 (1987).Google Scholar
21Smith, F.W., J. Appl. Phys. 55 (3), 764 (1984).CrossRefGoogle Scholar
22McKenzie, D. R., McPhedran, R. C., Sawides, N., and Bolten, L. C., Phil. Mag. 48, 341 (1983).CrossRefGoogle Scholar
23Zaluzec, N. J., Ultramicroscopy 9, 319 (1982).CrossRefGoogle Scholar
24Vora, H. and Moravec, T. J., J. Appl. Phys. 52 (10), 6151 (1981).Google Scholar
25Weissmantel, C., Thin Solid Films 58, 101 (1979).CrossRefGoogle Scholar
26McFeely, F.R., Kowlaczyk, S.P., Ley, L., Cavell, R.G., Poliak, R. A., and Shirley, D. A., Phys. Rev. B 9, 5268 (1974).CrossRefGoogle Scholar
27Tsai, H. and Bogy, D. B., J. Vac. Sci. Technol. A5 (6), 3287 (1987).CrossRefGoogle Scholar
28Pauling, L., The Nature of the Chemical Bond, 3rd ed. (Cornell Univ. Press).Google Scholar
29Warren, B.E., Phys. Rev. 9, 693 (1941).CrossRefGoogle Scholar
30Franklin, R.E., Proc. Roy. Soc. A209, 196 (1951).Google Scholar
31Jenkins, G. M., Kawamura, K., and Ban, L., Proc. Roy. Soc. A327, 501 (1972).Google Scholar
32Kakinoki, J., Katada, K., Hanawa, T., and Ino, T., Acta Cryst. 13, 171 (1960).Google Scholar
33Stenhouse, B. J. and Grout, P. J., J. Non-Crystalline Solids 27, 247 (1978).CrossRefGoogle Scholar
34Phillips, J.C., Phys. Rev. Lett. 42, 153 (1979).Google Scholar
35Angus, J.C. and Jansen, F., J. Vac. Sci. Technol. A6, 1778 (1988).Google Scholar
36Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
37Rubin, M., Hopper, C.B., Cho, N-H., and Bhushan, B., J. Mater. Res. 5, 2538 (1990).Google Scholar
38Jaccodine, R.J. and Schlegee, W.A., J. Appl. Phys. 37 (6), 2429 (1966).Google Scholar
39Liang, W. Y. and Cundy, S., Phil. Mag. 19, 1031 (1969).CrossRefGoogle Scholar
40Taft, E. A. and Phillip, H.R., Phys. Rev. 138, A197 (1965).CrossRefGoogle Scholar
41Egerton, R.F. and Whelan, M. J., Phil. Mag. 30, 739 (1974).CrossRefGoogle Scholar
42Egerton, R. F. and Whelan, M. J., J. Electron Spectrosc. Rel. Phenom. 3, 232 (1974).CrossRefGoogle Scholar
43Koma, A. and Miki, K., Appl. Phys. A34, 35 (1984).Google Scholar
44Tuinstra, F. and Koenig, J.L., J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
45Robertson, J., Adv. Phys. 35, 317 (1986).Google Scholar
46Al-Jishi, R. and Dresselhaus, G., Phys. Rev. B 26, 4514 (1982).Google Scholar
47Feldman, L. C. and Mayer, J. W., Fundamentals of Surface and Thin Films Analysis (North Holland, Amsterdam, 1986).Google Scholar
48Taue, J., Grigorovic, R., and Vancu, A., Phys. Status Solids 15, 627 (1966).Google Scholar
49Scharff, W., Hammer, K., Stenzel, O., Ullman, J., Vogel, M., Frauenheim, T., Eibisch, B., Roth, S., Schulze, S., and Muhling, I., Thin Solid Films 171, 157 (1989).CrossRefGoogle Scholar
50Robertson, J. and O'Reilly, E.P., Phys. Rev. B 35, 2946 (1987).CrossRefGoogle Scholar
51Dischler, B., Bubenzer, A., and Koidl, P., Solid State Commun. 48, 105 (1983).CrossRefGoogle Scholar
52Nadler, M.P., Donovan, T.N., and Greene, A.K., Appl. Surf. Sci. 18, 10 (1984).Google Scholar