Skip to main content Accessibility help
×
Home

Characterization of the secondary phases in spray formed Al–Zn–Mg–Cu–Sc–Zr alloy during hot compression

  • Z.L. Ning (a1), S. Guo (a2), M.X. Zhang (a3), F.Y. Cao (a1), Y.D. Jia (a4) and J.F. Sun (a1)...

Abstract

An Al–10.83Zn–3.39Mg–1.22Cu–0.16Zr–0.16Sc alloy was produced using the spray deposition technology. The microstructure evolution within temperature ranging between 613 K and 733 K during hot pressing process at different initial strain rate was investigated in a transmission electron microscope (TEM). Partial resolution of the primary precipitates in the deposited microstructure, such as η-MgZn2 and Al3(ScZr), took place. Moreover, new secondary η-MgZn2 and Al3(ScZr) precipitated from the super saturated solid solution and their effects on the recrystallization were also analyzed. The Al3(ScZr) and η-MgZn2 precipitation can act as barriers for the movement of both dislocations and grain boundaries, which are the main factors for hindering the recrystallization. Additionally, the dislocation slide during hot deformation was also investigated in detail. The spray deposition Al–Zn–Mg–Cu alloy own the well deformability, and the typical perfect dislocations can be found in the hot deformation Al–Zn–Mg–Cu alloy.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: jfsun@hit.edu.cn

References

Hide All
1. Heinz, A., Haszler, A., Keidel, C., Moldenhauer, S., Benedictus, R., and Miller, W.S.: Recent development in aluminium alloys for aerospace applications. Mater. Sci. Eng., A A280, 102 (2000).
2. Sanctis, M.D.: Structure and properties of rapidly solidfied ultrahigh strength Al–Zn–Mg–Cu alloys produced by spray deposition. Mater. Sci. Eng., A A141, 103 (1991).
3. Willliams James, C. and Starke Jr Edgar, A.: Progress in structural materials for aerospace systems. Acta Mater. 51, 5775 (2003).
4. Grant, P.S.: Spray forming. Prog. Mater. Sci. 39, 497 (1995).
5. Immarigeon, J.P., Holt, R.T., Koul, A.K., Zhao, L., Wallace, W., and Beddoes, J.C.: Lightweight materials for aircraft applications. Mater. Charact. 35, 41 (1995).
6. Yan, A., Chen, L., Liu, H.S., and Li, X.Q.: Fatigue crack propagation behaviour and corrosion resistance of Al–Zn–Mg–Cu–Ti(–Sn) alloys. Mater. Sci. Technol. 29, 319 (2013).
7. Davis, J.R.: Aluminum and Aluminum Alloys, Vol. 128 (ASM International, Materials Park, 1993).
8. Juarez-Islas, J.A., Perez, R., Lengsfeld, P., and Lavernia, E.J.: Microstructural and mechanical evaluations of spray-deposited 7XXX Al-alloys after conventional consolidation. Mater. Sci. Eng., A 179, 614 (1994).
9. Wang, F., Xiong, B.Q., Zhang, Y.A., Zhang, Z.H., Wangg, Z.X., Zhu, B.H., and Liu, H.W.: Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy. Mater. Des. 28, 1154 (2007).
10. Bai, P.C., Hou, X.H., Zhang, X.Y., Zhao, C.W., and Xing, Y.M.: Microstructure and mechanical properties of a large billet of spray formed Al–Zn–Mg–Cu alloy with high Zn content. Mater. Sci. Eng., A 508, 23 (2009).
11. Jia, Y.D., Cao, F.Y., Ning, Z.L., and Sun, J.F.: Influence of second phases on mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy. Mater. Des. 40, 536 (2012).
12. Champagne, V. and Helfritch, D.: Critical Assessment 11: Structural repairs by cold spray. Mater. Sci. Technol. 31, 627 (2015).
13. Glogovic, Z., Kozuh, Z., and Kralj, S.: Mathematical model for calculation of thickness of flame sprayed coating of aluminium on S235JR steel. Mater. Sci. Technol. 30, 676 (2014).
14. Hussain, T., McCartney, D.G., and Shipway, P.H.: Bonding between aluminium and copper in cold spraying: Story of asymmetry. Mater. Sci. Technol. 28, 1371 (2012).
15. Xiong, B.Q., Zhang, Y.G., Zhu, B.H., Liu, H.W., Zhang, Z.H., and Shi, L.K.: Research on ultra-high strength Al–11Zn–2.9Mg–1.7Cu alloy prepared by spray forming process. Mater. Sci. Forum 475–479, 2785 (2005).
16. Cai, Y.H., Lang, Y.J., Cao, L.Y., and Zhang, J.S.: Enhanced grain refinement in AA7050 Al alloy by deformation-induced precipitation. Mater. Sci. Eng., A 549, 100 (2012).
17. Jia, Y.D., Cao, F.Y., Guo, S., and Sun, J.F.: Hot deformation behavior of spray-deposited Al–Zn–Mg–Cu alloy. Mater. Des. 53, 79 (2014).
18. Ning, Z.L., Guo, S., Cao, F.Y., Wang, G.J., and Sun, J.F.: Microstructural evolution during extrusion and ECAP of a spray-deposited Al–Zn–Mg–Cu–Sc–Zr alloy. J. Mater. Sci. 45, 3023 (2012).
19. Zhang, H., Li, L.X., Yuan, D., Peng, D., and Peng, D.S.: Hot deformation behavior of the new Al–Mg–Si–Cu aluminum alloy during compression at elevated temperatures. Mater. Charact. 58, 168 (2007).
20. Bergsma, S.C., Kassner, M.E., Li, X., and Wall, M.A.: Strengthening in the new aluminum alloy 6069. Mater. Sci. Eng., A A254, 112 (1998).
21. Sakai, T.K. and Takahash, C.: Flow softening of 7075 aluminum alloy under hot compression. Mater. Trans. 32, 375 (1991).
22. Lin, Y.C., Li, L.T., Xia, Y.C., and Jiang, Y.Q.: Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy. J. Alloys Compd. 550, 438 (2013).
23. Li, J., Li, F., Cai, J., Wang, R.T., Yuan, Z.W., and Xue, F.M.: Flow behavior modeling of the 7050 aluminum alloy at elevated temperatures considering the compensation of strain. Mater. Des. 42, 369 (2012).
24. Rokni, M.R., Zarei-Hanzake, A., Roostaei, A.A., and Abedi, H.R.: An investigation into the hot deformation characteristics of 7075 aluminum alloy. Mater. Des. 32, 2339 (2011).
25. Suh, D.W., Lee, S.Y., Lee, K.H., Lim, S.K., and Oh, K.H.: Microstructural evolution of Al–Zn–Mg–Cu–(Sc) alloy during hot extrusion and heat treatments. J. Mater. Process. Technol. 155–156, 1330 (2004).
26. Kim, J.H., Yeom, J.T., lee, D.G., Lim, S.G., and Park, N.K.: Effect of scandium content on the hot extrusion of Al–Zn–Mg–(Sc) alloy. J. Mater. Process. Technol. 187–188, 635 (2007).
27. Jin, N.P., Zhang, H., Han, Y., Wu, W.X., and Chen, J.H.: Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature. Mater. Charact. 60, 530 (2009).
28. Oliveira, A.F. Jr., de Barros, M.C., Cardoso, K.R., and Travessa, D.N.: The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys. Mater. Sci. Eng., A A379, 321 (2004).
29. Hu, H.E., Zhen, L., Yang, L., Shao, W.Z., and Zhang, B.Y.: Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation. Mater. Sci. Eng., A A488, 64 (2008).
30. Jia, Y.D., Cao, F.Y., Guo, S., Ma, P., Liu, J.S., and Sun, J.F.: Hot deformation behavior of spray-deposited Al–Zn–Mg–Cu alloy. Mater. Des. 53, 79 (2014).
31. Guo, S., Ning, Z.L., Zhang, M.X., Cao, F.Y., and Sun, J.F.: Effects of gas to melt ratio on the microstructure of an Al–10.83Zn–3.39Mg–1.22Cu alloy produced by spray atomization and deposition. Mater. Charact. 87, 62 (2014).
32. Ning, Z.L., Guo, S., Cao, F.Y., Wang, G.J., Li, Z.C., and Sun, J.F.: Microstructural evolution during extrusion and ECAP of a spray-deposited Al–Zn–Mg–Cu–Sc–Zr alloy. J. Mater. Sci. 45, 3023 (2010).
33. Guo, J.Q. and Ohtera, K.: An intermediate phase appearing in Ll2–Al3Zr to DO23–Al3Zr phase transformation of rapidly solidified Al–Zr alloys. Mater. Lett. 27, 343 (1996).
34. Liebermann, H.H.: Rapidly Solidified Alloys: Processes Structures Properties Applications, Vol. 355 (Marcel Dekker, Inc., New York, 1993).
35. Yin, Z.M., Pan, Q.L., Zhang, Y.H., and Jiang, F.: Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys. Mater. Sci. Eng., A A280, 151 (2000).
36. Jia, Z.H., Royset, J., Solberg, J.K., and Liu, Q.: Formation of precipitates and recrystallization resistance in Al–Sc–Zr alloys. Trans. Nonferrous Met. Soc. China 22, 1866 (2012).
37. Huang, X.Y.: The Microstructure of Materials and its Electron Microscopy Analysis, Vol. 65 (Metallurgical Industry Press, Beijing, 2008).
38. Riddle, Y.W. and Sanders, T.H.: A study of coarsening, recrystallization, and morphology of microstructure in Al–Sc–(Zr)–(Mg) alloys. Metall. Mater. Trans. A 35, 341 (2004).
39. Yu, K., Li, W.X., Li, S.R., and Zhao, J.: Mechanical properties and microstructure of aluminum alloy 2618 with Al3(Sc, Zr) phases. Mater. Sci. Eng., A A368, 89 (2004).
40. Zou, L., Pan, Q.L., He, Y.B., Wang, C.Z., and Liang, W.J.: Effect of minor Sc and Zr addition on microstructures and mechanical properties of Al–Zn–Mg–Cu alloys. Trans. Nonferrous Met. Soc. China 17, 340 (2007).
41. Senkov, O.N., Shagiev, M.R., Senkova, S.V., and Miracle, D.: Precipitation of Al3(Sc,Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr alloy during conventional solution heat treatment and its effect on tensile properties. Acta Mater. 56, 3723 (2008).
42. Ning, Z.L., Cao, F.Y., Guo, S., Wang, G.J., Zhao, Z.H., Li, Z.C., and Sun, J.F.: Tensile behaviours of equal channel angular pressed Al–11.5Zn–2Mg–1.5Cu–0.2Sc–0.15Zr alloy fabricated by spray forming at ambient and elevated temperatures. Mater. Sci. Technol. 29, 234 (2013).
43. Salamci, E.: Calorimetric and transmission electron microscopy studies of spray deposited Al–Zn–Mg–Cu alloys. Mater. Sci. Technol. 20, 859 (2004).

Keywords

Characterization of the secondary phases in spray formed Al–Zn–Mg–Cu–Sc–Zr alloy during hot compression

  • Z.L. Ning (a1), S. Guo (a2), M.X. Zhang (a3), F.Y. Cao (a1), Y.D. Jia (a4) and J.F. Sun (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed