Skip to main content Accessibility help

Characterization of microstructure and property evolution in advanced cladding and duct: Materials exposed to high dose and elevated temperature

  • Todd R. Allen (a1), Djamel Kaoumi (a2), Janelle P. Wharry (a3), Zhijie Jiao (a4), Cem Topbasi (a5), Aaron Kohnert (a6), Leland Barnard (a7), Alicia Certain (a8), Kevin G. Field (a9), Gary S. Was (a10), Dane L. Morgan (a11), Arthur T. Motta (a12), Brian D. Wirth (a13) and Y. Yang (a14)...


Designing materials for performance in high-radiation fields can be accelerated through a carefully chosen combination of advanced multiscale modeling paired with appropriate experimental validation. The studies reported in this work, the combined efforts of six universities working together as the Consortium on Cladding and Structural Materials, use that approach to focus on improving the scientific basis for the response of ferritic–martensitic steels to irradiation. A combination of modern modeling techniques with controlled experimentation has specifically focused on improving the understanding of radiation-induced segregation, precipitate formation and growth under radiation, the stability of oxide nanoclusters, and the development of dislocation networks under radiation. Experimental studies use both model and commercial alloys, irradiated with both ion beams and neutrons. Transmission electron microscopy and atom probe are combined with both first-principles and rate theory approaches to advance the understanding of ferritic–martensitic steels.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Contributing Editor: Joel Ribis


This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to



Hide All
1. Kessler, G.: Requirements for nuclear energy in the 21st century nuclear energy as a sustainable energy source. Prog. Nucl. Energy 40, 309 (2002).
2. Stanculescu, A.: IAEA activities in the area of partitioning and transmutation. Nucl. Instrum. Methods Phys. Res., Sect. A 562, 614 (2006).
3. Broeders, C.H.M., Kiefhaber, E., and Wiese, H.W.: Burning transuranium isotopes in thermal and fast reactors. Nucl. Eng. Des. 202, 157 (2000).
4. Bianchi, F., Calabrese, R., Glinatsis, G., Lantieri, A., Monti, S., and Vettraino, F.: Regional and world level scenarios for sodium fast reactor deployment. Nucl. Eng. Des. 241, 1145 (2011).
5. Lennox, T.A., Millington, D.N., and Sunderland, R.E.: Plutonium management and Generation IV systems. Prog. Nucl. Energy 49, 589 (2007).
6. Marques, J.G.: Evolution of nuclear fission reactors: Third generation and beyond. Energy Convers. Manage. 51, 1774 (2010).
7. Salvatores, M.: Transmutation: Issues, innovative options and perspectives. Prog. Nucl. Energy 40, 375 (2002).
8. Bloom, E.E., Busby, J.T., Duty, C.E., Maziasz, P.J., McGreevy, T.E., Nelson, B.E., Pint, B.A., Tortorelli, P.F., and Zinkle, S.J.: Critical questions in materials science and engineering for successful development of fusion power. J. Nucl. Mater. 367370, 1 (2007).
9. Baluc, N., Abe, K., Boutard, J.L., Chernov, V.M., Diegele, E., Jitsukawa, S., Kimura, A., Klueh, R.L., Kohyama, A., Kurtz, R.J., Lasser, R., Matsui, H., Moslang, A., Muroga, T., Odette, G.R., Tran, M.Q., van der Schaaf, B., Wu, Y., and Zinkle, S.J.: Status of R&D activities on materials for fusion power reactors. Nucl. Fusion 47, 696 (2007).
10. Gelles, D.S.: Development of martensitic steels for high neutron damage applications. J. Nucl. Mater. 239, 99 (1996).
11. Allen, T., Busby, J., Meyer, M., and Petti, D.: Materials challenges for nuclear systems. Mater. Today 13, 14 (2010).
12. Zinkle, S.J. and Busby, J.T.: Structural materials for fission and fusion energy. Mater. Today 12, 12 (2009).
13. Grime, R.W., Koning, R.J.M., and Edwards, L.: Greater tolerance for nuclear materials. Nat. Mater. 7, 683 (2008).
14. Yvon, P. and Carré, F.: Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 385, 217 (2009).
15. Allen, T.R., Busb, J.T., Klueh, R.L., Maloy, S.A., and Toloczko, M.B.: Cladding and duct materials for advanced nuclear recycle reactors. J. Mater. 60, 15 (2008).
16. Allen, T., Burlet, H., Nanstad, R.K., Samaras, M., and Ukai, S.: Advanced structural materials and cladding. MRS Bull. 34, 20 (2009).
17. Klueh, R.L. and Harries, D.R.: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications (ASTM, West Conshohocken, PA, 2001).
18. Odette, G.R., Alinger, M.J., and Wirth, B.D.: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471 (2008).
19. Garner, F.A.: Radiation damage in austenitic steels. In Comprehensive Nuclear Materials, Konings, R.J.M. ed.; Elsevier: Oxford, 2012; pp. 3395.
20. Zinkle, S.J. and Ghoniem, N.M.: Prospects for accelerated development of high performance structural materials. J. Nucl. Mater. 417, 2 (2011).
21. Was, G.S.: Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, New York, 2007).
22. Wiedersich, H., Okamoto, P.R., and Lam, N.Q.: Theory of radiation-induced segregation in concentrated alloys. J. Nucl. Mater. 83, 98 (1979).
23. Was, G.S., Wharry, J.P., Frisbie, B., Wirth, B.D., Morgan, D., Tucker, J.D., and Allen, T.R.: Assessment of radiation-induced segregation mechanisms in austenitic and ferritic–martensitic alloys. J. Nucl. Mater. 411, 41 (2011).
24. Ardell, A.J.: Radiation-induced solute segregation in alloys. In Materials Issues for Generation IV Systems. (Springer, Dordrecht, Netherlands, 2008); pp. 285310.
25. Hanninen, H. and Aho-Mantila, I.: Environment-sensitive cracking of reactor internals. In Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, The Metallurgical Society, Warrendale, PA, 1988; pp. 7792.
26. Was, G.S. and Andresen, P.L.: Irradiation-assisted stress-corrosion cracking in austenitic alloys. JOM 44, 8 (1992).
27. Was, G.S. and Bruemmer, S.M.: Effects of irradiation on intergranular stress-corrosion cracking. J. Nucl. Mater. 216, 326 (1994).
28. Allen, T.R. and Was, G.S.: Modeling radiation-induced segregation in austenitic Fe–Cr–Ni alloys. Acta Mater. 46, 3679 (1998).
29. Nastar, M., Bellon, P., Martin, G., and Ruste, J.: Phase Transformations and Systems Driven Far from Equilibrium (Materials Research Society, Cambridge University Press, New York, NY, 1998).
30. Barnard, L., Tucker, J.D., Choudhury, S., Allen, T.R., and Morgan, D.: Modeling radiation induced segregation in Ni–Cr model alloys from first principles. J. Nucl. Mater. 425, 8 (2012).
31. Tucker, J.D., Najafabadi, R., Allen, T.R., and Morgan, D.: Ab initio-based diffusion theory and tracer diffusion in Ni–Cr and Ni–Fe alloys. J. Nucl. Mater. 405, 216 (2010).
32. Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, NY, 2009).
33. Field, K.G., Barnard, L.M., Parish, C.M., Busby, J.T., Morgan, D., and Allen, T.R.: Dependence on grain boundary structure of radiation induced segregation in a 9wt.% Cr model ferritic/martensitic steel. J. Nucl. Mater. 435, 172 (2013).
34. Wharry, J.P. and Was, G.S.: A systematic study of radiation-induced segregation in ferritic–martensitic alloys. J. Nucl. Mater. 442, 7 (2013).
35. Wharry, J.P. and Was, G.S.: The mechanism of radiation-induced segregation in ferritic–martensitic alloys. Acta Mater. 65, 42 (2014).
36. Duh, T.S., Kai, J.J., Chen, F.R., and Wang, L.H.: Numerical simulation modeling on the effects of grain boundary misorientation on radiation-induced solute segregation in 304 austenitic stainless steels. J. Nucl. Mater. 294, 267 (2001).
37. Sakaguchi, N., Shibayama, T., Kinoshita, H., and Takahashi, H.: Atomistic observation of radiation-induced grain-boundary movement in Fe–Cr–Ni alloy under electron irradiation. Philos. Mag. Lett. 81, 691 (2001).
38. Barnard, L., Odette, G.R., Szlufarska, I., and Morgan, D.: An ab initio study of Ti–Y–O nanocluster energetics in nanostructured ferritic alloys. Acta Mater. 60, 935 (2012).
39. Field, K.G., Miller, B.D., Chichester, H.J.M., Sridharan, K., and Allen, T.R.: Relationship between lath boundary structure and radiation induced segregation in a neutron irradiated 9wt.% Cr model ferritic/martensitic steel. J. Nucl. Mater. 445, 143 (2014).
40. Penisten, J.J.: The Mechanism of Radiation-Induced Segregation in Ferritic-Martensitic Steels (University of Michigan, Ann Arbor, MI, 2012).
41. Terentyev, D., Olsson, P., Klaver, T.P.C., and Malerba, L.: On the migration and trapping of single self-interstitial atoms in dilute and concentrated Fe–Cr alloys: Atomistic study and comparison with resistivity recovery experiments. Comput. Mater. Sci. 43, 1183 (2008).
42. Jiao, Z., Shankar, V., and Was, G.S.: Phase stability in proton and heavy ion irradiated ferritic–martensitic alloys. J. Nucl. Mater. 419, 52 (2011).
43. Wharry, J.P., Jiao, Z., Shankar, V., Busby, J.T., and Was, G.S.: Radiation-induced segregation and phase stability in ferritic–martensitic alloy T91. J. Nucl. Mater. 417, 140 (2011).
44. Jiao, Z. and Was, G.S.: Precipitate evolution in ion-irradiated HCM12A. J. Nucl. Mater. 425, 105 (2012).
45. Maloy, S.A., Toloczko, M.B., McClellan, K.J., Romero, T., Kohno, Y., Garner, F.A., Kurtz, R.J., and Kimura, A.: The effects of fast reactor irradiation conditions on the tensile properties of two ferritic/martensitic steels. J. Nucl. Mater. 356, 62 (2006).
46. Jia, X. and Dai, Y.: Microstructure in martensitic steels T91 and F82H after irradiation in SINQ Target-3. J. Nucl. Mater. 318, 207 (2003).
47. Klueh, R.L., Shiba, K., and Sokolov, M.A.: Embrittlement of irradiated F82H in the absence of irradiation hardening. J. Nucl. Mater. 386388, 191 (2009).
48. Gelles, D.S.: Microstructural examination of commercial ferritic alloys at 200 dpa. J. Nucl. Mater. 233237, 293 (1996).
49. Dubuisson, P., Gilbon, D., and Séran, J.L.: Microstructural evolution of ferritic-martensitic steels irradiated in the fast breeder reactor Phénix. J. Nucl. Mater. 205, 178 (1993).
50. Anderoglu, O., Van den Bosch, J., Hosemann, P., Stergar, E., Sencer, B.H., and Bhattacharyya, D.: Phase stability of an HT-9 duct irradiated in FFTF. J. Nucl. Mater.. 430, 194 (2012).
51. Sencer, B.H., Kennedy, J.R., Cole, J.I., Maloy, S.A., and Garner, F.A.: Microstructural analysis of an HT9 fuel assembly duct irradiated in FFTF to 155 dpa at 443 °C. J. Nucl. Mater. 393, 235 (2009).
52. Gupta, G., Jiao, Z., Ham, A.N., Busby, J.T., and Was, G.S.: Microstructural evolution of proton irradiated T91. J. Nucl. Mater. 351, 162 (2006).
53. Ziegler, J.F.: SRIM2006 Program (IBM Corp, Yorktown, New York, 2006).
54. Mayer, J., Giannuzzi, L.A., Kamino, T., and Michael, J.: TEM sample preparation and FIB-induced damage. MRS Bull. 32, 400 (2007).
55. Miller, M.K.: Atom Probe Tomography: Analysis at the Atomic Level (Springer, New York, NY, 2000).
56. Vaumousse, D., Cerezo, A., and Warren, P.J.: A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215 (2003).
57. Homolová, V., Janovec, J., Záhumenský, P., and Výrostková, A.: Influence of thermal-deformation history on evolution of secondary phases in P91 steel. Mater. Sci. Eng., A 349, 306 (2003).
58. Yamashita, S., Yano, Y., Tachi, Y., and Akasaka, N.: Effect of high dose/high temperature irradiation on the microstructure of heat resistant 11Cr ferritic/martensitic steels. J. Nucl. Mater. 386388, 135 (2009).
59. Abe, F., Horiuchi, T., Taneike, M., and Sawada, K.: Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature. Mater. Sci. Eng., A 378, 299 (2004).
60. Abe, F., Noda, T., and Okada, M.: Optimum alloy compositions in reduced-activation martensitic 9Cr steels for fusion reactor. J. Nucl. Mater. 195, 51 (1992).
61. Odette, G.R. and Hoelzer, D.T.: Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset. J. Mater. 62, 84 (2010).
62. de Carlan, Y., Bechade, J.L., Dubuisson, P., Seran, J.L., Billot, P., Bougault, A., Cozzika, T., Doriot, S., Hamon, D., Henry, J., Ratti, M., Lochet, N., Nunes, D., Olier, P., Leblond, T., and Mathon, M.H.: CEA developments of new ferritic ODS alloys for nuclear applications. J. Nucl. Mater. 386388, 430 (2009).
63. Ukai, S., Mizuta, S., Fujiwara, M., Okuda, T., and Kobayashi, T.: Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation. J. Nucl. Sci. Technol. 39, 778 (2002).
64. Hoelzer, D.T., Bentley, J., Sokolov, M.A., Miller, M.K., Odette, G.R., and Alinger, M.J.: Influence of particle dispersions on the high-temperature strength of ferritic alloys. J. Nucl. Mater. 367370, 166 (2007).
65. Alinger, M.J., Odette, G.R., and Hoelzer, D.T.: On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostructured ferritic alloys. Acta Mater. 57, 392 (2009).
66. Miller, M.K., Hoelzer, D.T., Kenik, E.A., and Russell, K.F.: Nanometer scale precipitation in ferritic MA/ODS alloy MA957. J. Nucl. Mater. 329333, 338 (2004).
67. Marquis, E.A.: Core/shell structures of oxygen-rich nanofeatures in oxide-dispersion strengthened Fe–Cr alloys. Appl. Phys. Lett. 93, 181904 (2008).
68. Alinger, M.J., Wirth, B.D., Lee, H.J., and Odette, G.R.: Lattice Monte Carlo simulations of nanocluster formation in nanostructured ferritic alloys. J. Nucl. Mater. 367370, 153 (2007).
69. Jiang, Y., Smith, J.R., and Odette, G.R.: Formation of Y-Ti-O nanoclusters in nanostructured ferritic alloys: A first-principles study. Phys. Rev. B 79, 064103 (2009).
70. Demkowicz, M.J., Bellon, P., and Wirth, B.D.: Atomic-scale design of radiation-tolerant nanocomposites. MRS Bull. 35, 992 (2010).
71. Brandes, M.C., Kovarik, L., Miller, M.K., Daehn, G.S., and Mills, M.J.: Creep behavior and deformation mechanisms in a nanocluster strengthened ferritic steel. Acta Mater. 60, 1827 (2012).
72. Fu, C.L., Krčmar, M., Painter, G.S., and Chen, X.Q.: Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe. Phys. Rev. Lett. 99, 225502 (2007).
73. Ribis, J. and de Carlan, Y.: Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater. 60, 238 (2012).
74. Monnet, I., Dubuisson, P., Serruys, Y., Ruault, M.O., Kaïtasov, O., and Jouffrey, B.: Microstructural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels. J. Nucl. Mater. 335, 311 (2004).
75. Allen, T.R., Gan, J., Cole, J.I., Miller, M.K., Busby, J.T., Shutthanandan, S., and Thevuthasan, S.: Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation. J. Nucl. Mater. 375, 26 (2008).
76. Certain, A.G., Field, K.G., Allen, T.R., Miller, M.K., Bentley, J., and Busby, J.T.: Response of nanoclusters in a 9Cr ODS steel to 1 dpa, 525 °C proton irradiation. J. Nucl. Mater. 407, 2 (2010).
77. Kishimoto, H., Kasada, R., Hashitomi, O., and Kimura, A.: Stability of Y–Ti complex oxides in Fe–16Cr–0.1Ti ODS ferritic steel before and after heavy-ion irradiation. J. Nucl. Mater. 386388, 533 (2009).
78. Kishimoto, H., Yutani, K., Kasada, R., Hashitomi, O., and Kimura, A.: Heavy-ion irradiation effects on the morphology of complex oxide particles in oxide dispersion strengthened ferritic steels. J. Nucl. Mater. 367370, 179 (2007).
79. Pareige, P., Miller, M.K., Stoller, R.E., Hoelzer, D.T., Cadel, E., and Radiguet, B.: Stability of nanometer-sized oxide clusters in mechanically-alloyed steel under ion-induced displacement cascade damage conditions. J. Nucl. Mater. 360, 136 (2007).
80. Lescoat, M.L., Ribis, J., Gentils, A., Kaïtasov, O., de Carlan, Y., and Legris, A.: In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation. J. Nucl. Mater. 428, 176 (2012).
81. Certain, A., Kuchibhatla, S., Shutthanandan, V., Hoelzer, D.T., and Allen, T.R.: Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J. Nucl. Mater. 434, 311 (2013).
82. Certain, A., Lee Voigt, H.J., Allen, T.R., and Wirth, B.D.: Investigation of cascade-induced re-solution from nanometer sized coherent precipitates in dilute Fe–Cu alloys. J. Nucl. Mater. 432, 281 (2013).
83. Lescoat, M.L., Ribis, J., Chen, Y., Marquis, E.A., Bordas, E., and Trocellier, P.: Radiation-induced Ostwald ripening in oxide dispersion strengthened ferritic steels irradiated at high ion dose. Acta Mater. 78, 328 (2014).
84. Ziegler, J.F.: SRIM-2011 (IBM Corp, Yorktown, New York, 2011).
85. Kaoumi, D. and Adamson, J.: Self-ordered defect structures in two model F/M steels under in situ ion irradiation. J. Nucl. Mater. 448, 233 (2014).
86. Kaoumi, D., Adamson, J., and Kirk, M.: Microstructure evolution of two model ferritic/martensitic steels under in situ ion irradiation at low doses (0–2 dpa). J. Nucl. Mater. 445, 12 (2014).
87. Topbasi, C., Motta, A.T., and Kirk, M.A.: In situ study of heavy ion induced radiation damage in NF616 (P92) alloy. J. Nucl. Mater. 425, 48 (2012).
88. Ennis, P.J., Zielinska-Lipiec, A., Wachter, O., and Czyrska-Filemonowicz, A.: Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant. Acta Mater. 45, 4901 (1997).
89. Topbasi, C., Kaoumi, D., and Motta, A.T.: Microstructural evolution in NF616 (P92) and 9Cr-model alloy under heavy ion irradiation. J. Nucl. Mater. in press.
90. Jenkins, M.L., Yao, Z., Hernández-Mayoral, M., and Kirk, M.A.: Dynamic observations of heavy-ion damage in Fe and Fe–Cr alloys. J. Nucl. Mater. 389, 197 (2009).
91. Hernández-Mayoral, M., Yao, Z., Jenkins, M.L., and Kirk, M.A.: Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 2: Damage evolution in thin-foils at higher doses. Philos. Mag. 88, 2881 (2008).
92. Fukushima, H., Shimomura, Y., and Yoshida, H.: Radiation damage in SUS316 and ferritic steels. J. Nucl. Mater. 141143, 938 (1986).
93. Kirk, M.A., Robertson, M., Vetrano, J.S., Jenkins, M.L., Funk, L.L., and Garner, F.H.: Radiation-induced changes in microstructure. In Proceedings of the 13th International Symposium of the ASTM, STP 955, Philadephia, Garner, F.H., Packan, N.H., and Kumar, A.S. eds. (ASTM, West Hanover, MA, 1987); p. 48.
94. Yao, Z., Hernández-Mayoral, M., Jenkins, M.L., and Kirk, M.A.: Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 1: Damage evolution in thin-foils at lower doses. Philos. Mag. 88, 2851 (2008).
95. Arakawa, K., Ono, K., Isshiki, M., Mimura, K., Uchikoshi, M., and Mori, H.: Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science 318, 956 (2007).
96. Wirth, B.D., Odette, G.R., Maroudas, D., and Lucas, G.E.: Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron. J. Nucl. Mater. 276, 33 (2000).
97. Calder, A.F., Bacon, D.J., Barashev, A.V., and Osetsky, Y.N.: Computer simulation of cascade damage in α-iron with carbon in solution. J. Nucl. Mater. 382, 91 (2008).
98. Bacon, D.J., Osetsky, Y.N., Stoller, R., and Voskoboinikov, R.E.: MD description of damage production in displacement cascades in copper and α-iron. J. Nucl. Mater. 323, 11 (2003).
99. Wirth, B.D.: How does radiation damage materials? Science 318, 923 (2007).
100. Osetsky, N., Bacon, D.J., Serra, A., Singh, B.N., and Golubov, S.I.: One-dimensional atomic transport by clusters of self-interstitial atoms in iron and copper. Philos. Mag. 83, 61 (2003).
101. Cottrell, A.H. and Bilby, B.: Dislocation theory of yielding and strain ageing of iron. Phys. Soc. 62, 49 (1949).
102. Wirth, B.D., Hu, X., Kohnert, A., and Xu, D.: Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies. J. Mater. Res. 30(9), (2015).
103. Phythian, W.J., Stoller, R.E., Foreman, A.J.E., Calder, A.F., and Bacon, D.J.: A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution. J. Nucl. Mater. 223, 245 (1995).
104. Stoller, R.E.: The role of cascade energy and temperature in primary defect formation in iron. J. Nucl. Mater. 276, 22 (2000).
105. Shim, J.H., Lee, H.J., and Wirth, B.D.: Molecular dynamics simulation of primary irradiation defect formation in Fe–10%Cr alloy. J. Nucl. Mater. 351, 56 (2006).
106. Fu, C.C., Willaime, F., and Ordejón, P.: Stability and mobility of mono- and di-interstitials in alpha-iron. Phys. Rev. Lett. 92, 175503 (2004).
107. Willaime, F., Fu, C.C., Marinica, M.C., and Torre, J.D.: Stability and mobility of self-interstitials and small interstitial clusters in α-iron: Ab initio and empirical potential calculations. Nucl. Instrum. Methods Phys. Res., Sect. B 228, 92 (2005).
108. Osetsky, Y.N., Bacon, D.J., Serra, A., Singh, B.N., and Golubov, S.I.: Stability and mobility of defect clusters and dislocation loops in metals. J. Nucl. Mater. 276, 65 (2000).
109. Soneda, N. and Diaz de La Rubia, T.: Migration kinetics of the self-interstitial atom and its clusters in bcc Fe. Philos. Mag. A 81, 331 (2001).

Related content

Powered by UNSILO

Characterization of microstructure and property evolution in advanced cladding and duct: Materials exposed to high dose and elevated temperature

  • Todd R. Allen (a1), Djamel Kaoumi (a2), Janelle P. Wharry (a3), Zhijie Jiao (a4), Cem Topbasi (a5), Aaron Kohnert (a6), Leland Barnard (a7), Alicia Certain (a8), Kevin G. Field (a9), Gary S. Was (a10), Dane L. Morgan (a11), Arthur T. Motta (a12), Brian D. Wirth (a13) and Y. Yang (a14)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.