Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-05T00:22:10.663Z Has data issue: false hasContentIssue false

Characterization of components of nano-energetics by small-angle scattering techniques

Published online by Cambridge University Press:  31 January 2011

Joseph T. Mang*
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Rex P. Hjelm
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Steven F. Son
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Paul D. Peterson
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Betty S. Jorgensen
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a)Address all correspondence to this author. e-mail: jtmang@lanl.gov
Get access

Abstract

Small-angle scattering (SAS) and ultra small-angle scattering techniques, employing x-rays and neutrons, were used to characterize six different aluminum nanopowders and nanopowders composed of molybdenum trioxide and tungsten trioxide nanoparticles. Each material has different primary particle morphology and aggregate and agglomerate geometry, and each is important to the development of nano-energetic materials. The combination of small-angle and ultra small-angle techniques allowed a wide range of length scales to be probed, providing a more complete characterization of the materials. For the aluminum-based materials, differences in the scattering of x-rays and neutrons from aluminum and aluminum oxide provided sensitivity to the metal core and metal oxide shell structure of the primary nanoparticles. Small-angle scattering was able to discriminate between particle size and shape and agglomerate and aggregate geometry, allowing analysis of both aspects of the structure. Using the results of these analyses and guided by scanning electron microscopy (SEM) images, physical models were developed, allowing for a quantitative determination of particle morphology, mean nanoparticle size, nanoparticle size distribution, surface layer thickness, and aggregate and agglomerate fractal dimension. Particle size distributions calculated using a maximum entropy algorithm or by assuming a log-normal particle size distribution function were comparable. Surface area and density determinations from the small-angle scattering measurements were comparable to those obtained from other, more commonly used analytical techniques: gas sorption using Brunauer–Emmett–Teller analysis, thermogravimetric analysis, and helium pycnometry. Particle size distribution functions derived from the SAS measurements agreed well with those obtained from SEM.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hjelm, R.P., Wampler, W.A., Seeger, P.A. Gerspacher, M.: The microstructure and morphology of carbon black: A study using small angle neutron scattering and contrast variation. J. Mater. Res. 9, 3210 1994CrossRefGoogle Scholar
2Shen, L.F., Stachowiak, A., Fateen, S.E.K., Laibinis, P.E. Hatton, T.A.: Structure of alkanoic acid stabilized magnetic fluids: A small angle neutron and light scattering analysis. Langmuir 17, 288 2001CrossRefGoogle Scholar
3Ozawa, M. Loong, C.K.: Neutron studies of nanostructured CuO–Al2O3 NOx removal catalysts. Physica B (Amsterdam) 241–243, 269 1998Google Scholar
4Lowe, T.: The revolution in nanometals. Adv. Mater. Proc. 160, 63 2002Google Scholar
5Son, S.F., Busse, J.R., Asay, B.W., Peterson, P.D., Mang, J.T., Bockman, B. Pantoya, M.L.: Propagation studies of metastable intermolecular composites (MIC), in Proceedings of the 29th International Pyrotechnics Seminar edited by F.J. Schelling International Pyrotechnics Seminars, IPS USA, Inc., Marshall, TX 2002 203Google Scholar
6Son, S.F., Hiskey, M.A., Naud, D.L., Busse, J.R. Asay, B.W.: Lead-free electric matches, in Proceedings of the 29th International Pyrotechnics Seminar, edited by F.J. Schelling International Pyrotechnics Seminars, IPS USA, Inc., Marshall, TX 2002 871Google Scholar
7Walley, S.M., Balzer, J.E., Proud, W.G. Field, J.E.: Response of thermites to dynamic high pressure and shear. Proc. R. Soc. London A 456, 1483 2000CrossRefGoogle Scholar
8Jorgensen, >B.: (unpublished)B.:+(unpublished)>Google Scholar
9Bockmon, B.S., Pantoya, M.L., Son, S.F., Asay, B.W. Mang, J.T.: Combustion velocities and propagation mechanisms of metastable interstitial composites. J. Appl. Phys. 98, 064903 2005CrossRefGoogle Scholar
10Espada, L.I., Mang, J.T., Orler, E.B., Wrobleski, D.A., Langlois, D.A., Hjelm, R.P.: Structural characterization of segmented polyurethanes by small angle neutron scattering, in Polymer Interfaces and Thin Films edited by A. Karim, T.P. Russell, C.W. Frank, and P.F. Nealey (Mater. Res. Soc. Symp. Proc. 710, Warrendale, PA, 2002), p. 193Google Scholar
11Koberstein, J.T., Morra, B. Stein, R.S.: Determination of diffuse-boundary thicknesses of polymers by small-angle x-ray scattering. J. Appl. Crystallogr. 13, 34 1980CrossRefGoogle Scholar
12Beaucage, G.: Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J. Appl. Crystallogr. 29, 134 1996CrossRefGoogle Scholar
13Iannacchione, G.S., Garland, C.W., Mang, J.T. Rieker, T.P.: Calorimetric and small angle x-ray scattering study of phase transitions in octylcyanobiphenyl-aerosil dispersions. Phys. Rev. E 58, 5966 1998CrossRefGoogle Scholar
14Mang, J.T., Kumar, S. Hammouda, B.: Discotic micellar nematic and lamellar phases under shear flow. Europhys. Lett. 28, 489 1994CrossRefGoogle Scholar
15Hjelm, R.P., Schteingart, C., Hofmann, A.F. Sivia, D.S.: Form and structure of self-assembling particles in monoolein-bile salt mixtures. J. Phys. Chem. 99, 16395 1995CrossRefGoogle Scholar
16Thiyagarajan, P.: Characterization of materials of industrial importance using small-angle scattering techniques. J. Appl. Crystallogr. 36, 373 2003CrossRefGoogle Scholar
17Littrell, K.C., Khalili, N.R., Campbell, M., Sandi, G. Thiyagarajan, P.: Microstructural analysis of activated carbons prepared from paper mill sludge by SANS and BET. Chem. Mater. 14, 327 2002CrossRefGoogle Scholar
18Mang, J.T., Skidmore, C.B., Hjelm, R.P. Howe, P.M.: Application of small-angle neutron scattering to the study of porosity in energetic materials. J. Mater. Res. 15, 1199 2000CrossRefGoogle Scholar
19Fagherazzi, G. Polizzi, S.: Yttria-based nano-sized powders: A new class of fractal materials obtained by combustion synthesis. J. Mater. Res. 15, 586 2000CrossRefGoogle Scholar
20Hecht, A.M., Geissler, E. Horkay, F.: Structure of silica-filled poly (dimethyl siloxane) gels and solutions. Phys. Rev. E 59, 1976 1999CrossRefGoogle Scholar
21Winter, R., Quinten, M., Dierstein, A., Hempelmann, R., Altherr, A. Veith, M.: Agglomeration of nano-MgAl2O4 spinel from microemulsion and CVD techniques. J. Appl. Crystallogr. 33, 507 2000CrossRefGoogle Scholar
22Beaucage, G., Kammler, H.K. Pratsinis, S.E.: Particle size distribution from small-angle scattering using global scattering functions. J. Appl. Crystallogr. 37, 523 2004CrossRefGoogle Scholar
23Beaucage, G.: Determination of branch fraction and minimum dimension of mass-fractal aggregates. Phys. Rev. E 70, 031401 2004CrossRefGoogle ScholarPubMed
24Hyeon-Lee, J., Beaucage, G., Pratsinis, S.E. Vemury, S.: Fractal analysis of flame-synthesized nanostructured silica and titania powders using small-angle x-ray scattering. Langmuir 14, 5751 1998CrossRefGoogle Scholar
25Koga, T., Takenaka, M., Aizawa, K., Nakamura, M. Hashimoto, T.: Structure factors of dispersible units of carbon black filler in rubbers. Langmuir 21, 11409 2005CrossRefGoogle ScholarPubMed
26Kammler, H.K., Beaucage, G., Mueller, R. Pratsinis, S.E.: Structure of flame-made silica nanoparticles by ultra-small-angle x-ray scattering. Langmuir 20, 1915 2004CrossRefGoogle Scholar
27Glatter, O. Kratky, O.: Small Angle X-ray Scattering Academic Press, London, UK 1982Google Scholar
28Beaucage, G.: Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Crystallogr. 28, 717 1995CrossRefGoogle Scholar
29Guinier, A.: X-ray Diffraction W.H. Freeman and Company, San Francisco, CA 1963Google Scholar
30Freltoft, T., Kjems, J.K. Sinha, S.K.: Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering. Phys. Rev. B 33, 269 1986CrossRefGoogle ScholarPubMed
31Markovic, I. Ottewill, R.H.: Small angle neutron scattering studies on aqueous dispersions of calcium carbonate, Part 2. Determination of the form factor for concentric spheres. Colloid Polym. Sci. 264, 65 1986CrossRefGoogle Scholar
32Kotlarchyk, M. Chen, S.H.: Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. J. Chem. Phys. 79, 2461 1983CrossRefGoogle Scholar
33Pedersen, J.S.: Analysis of small-angle scattering data from colloids and polymer solutions: Modeling and least-squares fitting. Adv. Colloid Interface Sci. 70, 171 1997CrossRefGoogle Scholar
34Potton, J.A., Daniell, G.J. Rainford, B.D.: Particle size distributions from SANS data using the maximum entropy method. J. Appl. Crystallogr. 21, 663 1988CrossRefGoogle Scholar
35Jemian, P.R., Long, G.G., Lofaj, F. Wiederhorn, S.M.: Anomalous ultra-small-angle x-ray scattering from evolving microstructures during tensile creep, in Applications of Synchrotron Radiation Techniques to Materials Science V edited by S.R. Stock, S.M. Mini, and D.L. Perry, (Mater. Res. Soc. Symp. Proc. 590, Pittsburgh, PA, 2000), p. 131Google Scholar
36Kiss, L.B., Soderlund, J., Niklasson, G.A. Granqvist, C.G.: The real origin of log-normal size distributions of nanoparticles in vapor growth processes. Nanostruct. Mater. 12, 327 1999CrossRefGoogle Scholar
37Rieker, T.P. Hubbard, P.F.: The university of New Mexico/Sandia National Laboratories small-angle scattering laboratory. Rev. Sci. Instrum. 69, 3504 1998CrossRefGoogle Scholar
38Lake, J.A.: An iterative method of slit-correcting small angle x-ray data. Acta Crystallogr. 23, 191 1967CrossRefGoogle Scholar
39Seeger, P.A. Hjelm, R.P.: Small-angle neutron scattering at pulsed spallation sources. J. Appl. Crystallogr. 24, 467 1991CrossRefGoogle Scholar
40Hjelm, R.P.: The resolution of TOF low-Q diffractometers: Instrumental, data acquisition and reduction factors. J. Appl. Crystallogr. 21, 618 1988CrossRefGoogle Scholar
41Mazumder, S., Sequeira, A., Roy, S.K. Biswas, A.R.: Multiple small-angle scattering: An experimental investigation. J. Appl. Crystallogr. 26, 357 1993CrossRefGoogle Scholar
42Guinier, A. Fournet, G.: Small-Angle Scattering of X-rays John Wiley and Sons, New York 1955Google Scholar