Skip to main content Accessibility help

Characterization of amorphous zinc tin oxide semiconductors

  • Jaana S. Rajachidambaram (a1), Shail Sanghavi (a2), Ponnusamy Nachimuthu (a2), Vaithiyalingam Shutthanandan (a2), Tamas Varga (a2), Brendan Flynn (a3), Suntharampillai Thevuthasan (a4) and Gregory S. Herman (a5)...


Amorphous zinc tin oxide (ZTO) was investigated to determine the effect of deposition and postannealing conditions on film structure, composition, surface contamination, and thin-film transistor (TFT) performance. X-ray diffraction results indicated that the ZTO films remain amorphous even after annealing to 600 °C. Rutherford backscattering spectrometry indicated that the bulk Zn:Sn ratio of the sputter-deposited films were slightly tin rich compared to the composition of the ceramic sputter target. X-ray photoelectron spectroscopy indicated that residual surface contamination depended strongly on the sample postannealing conditions where water, carbonate, and hydroxyl species were adsorbed to the surface. Electrical characterization of ZTO TFTs indicated that the best devices had mobilities of 17 cm2/Vs, threshold voltages of −1.5 V, subthreshold slopes of 0.9 V/dec, turn-on voltages of −12 V, and on-to-off ratio of >107. Annealing ZTO in vacuum assisted in the removal of adsorbed species, which may reduce defects in the films and improve device performance.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004).
2.Hosono, H.: Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 352, 851 (2006).
3.Chiang, H.Q., Wager, J.F., Hoffman, R.L., Jeong, J., and Keszler, D.A.: High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 86, 013503 (2005).
4.Hoffman, R.L.: Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors. Solid-State Electron. 50, 784 (2006).
5.Seo, S., Choi, C., Hwang, Y., and Bae, B.: High performance solution-processed amorphous zinc tin oxide thin film transistor. J. Phys. D: Appl. Phys. 42, 035106 (2009).
6.Hong, D., Chiang, H.Q., and Wager, J.F.: Zinc tin oxide thin-film transistors via reactive sputtering using a metal target. J. Vac. Sci. Technol., B 24, L23 (2006).
7.Hong, D. and Wager, J.F.: Passivation of zinc–tin–oxide thin-film transistors. J. Vac. Sci. Technol., B 23, L25 (2005).
8.Chang, Y.J., Lee, D.H., Herman, G.S., and Chang, C.H.: High-performance, spin-coated zinc tin oxide thin-film transistors. Electrochem. Solid-State Lett. 10, H135 (2007).
9.Jeong, J.K., Jeong, J.H., Yang, H.W., Park, J.S., Mo, Y.G., and Kim, H.D.: High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel. Appl. Phys. Lett. 91, 113505 (2007).
10.McDowell, M.G. and Hill, I.G.: Influence of channel stoichiometry on zinc indium oxide thin-film transistor performance. IEEE Trans. Electron Devices 56, 346 (2009).
11.Kim, M.G., Kim, H.S., Ha, Y.G., He, J., Kanatzidis, M.G., Facchetti, A., and Marks, T.J.: High-performance solution-processed amorphous zinc-indium-tin oxide thin-film transistors. J. Am. Chem. Soc. 132, 10352 (2010).
12.Satoh, K., Kakehi, Y., Okamoto, A., Murakami, S., Uratani, F., and Yotsuya, T.: Influence of oxygen flow ratio on properties of Zn2SnO4 thin films deposited by RF magnetron sputtering. Jpn. J. Appl. Phys., Part 2 44, L34 (2005).
13.Dutta, S. and Dodabalapur, A.: Zinc tin oxide thin film transistor sensor. Sens. Actuators, B 143, 50 (2009).
14.Jackson, W.B., Hoffman, R.L., and Herman, G.S.: High-performance flexible zinc tin oxide field-effect transistors. Appl. Phys. Lett. 87, 193503 (2005).
15.McDowell, M.G., Sanderson, R.J., and Hill, I.G.: Combinatorial study of zinc tin oxide thin-film transistors. Appl. Phys. Lett. 92, 013502 (2008).
16.Cheong, W.S., Yoon, S.M., Shin, J.H., and Hwang, C.S.: Combinatorial approach to the fabrication of zinc-tin-oxide transparent thin-film transistors. J. Korean Phys. Soc. 54, 544 (2009).
17.Jayaraj, M.K., Saji, K.J., Nomura, K., Kamiya, T., and Hosono, H.: Optical and electrical properties of amorphous zinc tin oxide thin films examined for thin film transistor application. J. Vac. Sci. Technol., B 26, 495 (2008).
18.Satoh, K., Kakehi, Y., Okamoto, A., Murakami, S., Moriwaki, K., and Yotsuya, T.: Electrical and optical properties of Al-doped ZnO–SnO2 thin films deposited by RF magnetron sputtering. Thin Solid Films 516, 5814 (2008).
19.Görrn, P., Lehnhardt, M., Riedl, T., and Kowalsky, W.: The influence of visible light on transparent zinc tin oxide thin film transistors. Appl. Phys. Lett. 91, 193504 (2007).
20.Seo, S., Hwang, Y.H., and Bae, B.S.: Postannealing process for low temperature processed sol–gel zinc tin oxide thin film transistors. Electrochem. Solid-State Lett. 13, H357 (2010).
21.Jeong, S., Jeong, Y., and Moon, J.: Solution-processed zinc tin oxide semiconductor for thin-film transistors. J. Phys. Chem. C 112, 1108 (2008).
22.Kim, Y.H., Ho Kim, K., Oh, M.S., Kim, H.J., Han, J.I., Han, M.K., and Park, S.K.: Ink-jet-printed zinc–tin–oxide thin-film transistors and circuits with rapid thermal annealing process. IEEE Electron Device Lett. 31, 834 (2010).
23.Avis, C. and Jang, J.: A high performance inkjet printed zinc tin oxide transparent thin-film transistor manufactured at the maximum process temperature of 300°C and its stability test. Electrochem. Solid-State Lett. 14, J9 (2011).
24.Pal, B.N., Dhar, B.M., See, K.C., and Katz, H.E.: Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. Nat. Mater. 8, 898 (2009).
25.Kamiya, T., Nomura, K., and Hosono, H.: Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 11, 044305 (2010).
26.Chambers, S.A., Engelhard, M.H., Shutthanandan, V., Zhu, Z., Droubay, T.C., Qiao, L., Sushko, P.V., Feng, T., Lee, H.D., Gustafsson, T., Shah, A.B., Zuo, J-M., and Ramasse, Q.M.: Instability, intermixing and electronic structure at the epitaxial LaAlO3/SrTiO3(001) heterojunction. Surf. Sci. Rep. 65, 317 (2010).
27.Mayer, M.: SIMNRA User’s Guide, Report IPP 9/113, Max-Planck-Institut fur Plasmaphysik (Garching, Germany, 1997).
28.Young, D.L., Moutinho, H., Yan, Y., and Coutts, T.J.: Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films. J. Appl. Phys. 92, 310 (2002).
29.Kluth, O., Agashe, C., Hupkes, J., Muller, J., and Rech, B.: Magnetron sputtered zinc stannate films for silicon thin film solar cells. In Proceedings of Third World Conference on Photovoltaic Energy Conversion; K. Kurokawa, L.L. Kazmerski, B. McNelis, M. Yamaguchi, C. Wronski, W.C. Sinke, eds., IEEE, Japan, 2003; p. 1800.
30.Khorami, H.A., Keyanpour – Rad, M., and Vaezi, M.R.: Synthesis of SnO2/ZnO composite nanofibers by electrospinning method and study of its ethanol sensing properties. Appl. Surf. Sci. 257, 7988 (2011).
31.Ko, J.H., Kim, I.H., Kim, D., Lee, K.S., Lee, T.S., Cheong, B., and Kim, W.M.: Transparent and conducting Zn-Sn-O thin films prepared by combinatorial approach. Appl. Surf. Sci. 253, 7398 (2007).
32.Jin, M.A., Shulai, H., Honglei, M.A., and Lingyun, G.A.I.: Preparation and characterization of transparent conducting Zn-Sn-O films deposited on organic substrates at low temperature. Sci. China 46, 619 (2003).
33.Stambolova, I., Toneva, A., Blaskov, V., Radev, D., Tsvetanova, Ya., Vassilev, S., and Peshev, P.: Preparation of nanosized spinel stannate, Zn2SnO4, from a hydroxide precursor. J. Alloys Compd. 391, L1 (2005).
34.Yamada, Y., Seno, Y., Masuoka, Y., and Yamashita, K.: Nitrogen oxides sensing characteristics of Zn2SnO4 thin film. Sens. Actuators, B 49, 248 (1998).
35.Ivetić, T., Nikolić, M.V., Nikolić, P.M., Blagojević, V., Đurić, S., Srećković, T., and Ristić, M.M.: Investigation of zinc stannate synthesis using photoacoustic spectroscopy. Sci. Sintering 39, 153 (2007).
36.Minami, T., Takata, S., Sato, H., and Sonohara, H.: Properties of transparent zinc-stannate conducting films prepared by radio frequency magnetron sputtering. J. Vac. Sci. Technol., A 13, 1095 (1995).
37.Minami, T., Sonohara, H., Takata, S., and Sato, H.: Highly transparent and conductive zinc-stannate thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 33, L1693 (1994).
38.Oliziersky, A., Barquinha, P., Vilá, A., Magaña, C., Fortunato, E., Morante, J.R., and Martins, R.: Role of Ga2O3-In2O3-ZnO channel composition on the electrical performance of thin-film transistors. Mater. Chem. Phys. 131, 512 (2011).
39.Annamalai, A., Eo, Y.D., Im, C., and Lee, M-J.: Surface and dye loading behavior of Zn2SnO4 nanoparticles hydrothermally synthesized using different mineralizers. Mater. Charact. 62, 1007 (2011).
40.Freeware available
41.Herman, G.S., Dohnalek, Z., Ruzycki, N., and Diebold, U.: Experimental investigation of the interaction of water and methanol with anatase-TiO2(101). J. Phys. Chem. B 107, 2788 (2003).
42.Jain, V.K., Kumar, P., Kumar, M., Jain, P., Bhandari, D., and Vijay, Y.K.: Study of post annealing influence on structural, chemical and electrical properties of ZTO thin films. J. Alloys Compd. 509, 3541 (2011).
43.Jeong, S., Ha, Y.G., Moon, J., Facchetti, A., and Marks, T.: Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 22, 1346 (2010).
44.Meng, L-J., Moreira de Sa, C.P., and dos Santos, M.P.: Study of the structural properties of ZnO thin films by x-ray photoelectron spectroscopy. Appl. Surf. Sci. 78, 57 (1994).
45.Lu, Y.F., Ni, H.Q., Mai, Z.H., and Ren, Z.M.: The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition. J. Appl. Phys. 88, 498 (2000).
46.Deng, X.Y., Verdaguer, A., Herranz, T., Weis, C., Bluhm, H., and Salmeron, M.: Surface chemistry of Cu in the presence of CO2 and H2O. Langmuir 24, 9474 (2008).
47.Nomura, K., Kamiya, T., Ohta, H., Hirano, M., and Hosono, H.: Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing. Appl. Phys. Lett. 93, 192107 (2008).
48.Kim, M-G., Kanatzidis, M.G., Facchetti, A., and Marks, T.J.: Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10, 382 (2011).
49.Fakhri, M., Görrn, P., Weimann, T., Hinze, P., and Riedl, T.: Enhanced stability against bias-stress of metal-oxide thin film transistors deposited at elevated temperatures. Appl. Phys. Lett. 99, 123503 (2011).
50.Choi, W-S.: Interfacial study of metal oxide with source-drain electrodes and oxide semiconductors by XPS. Electron. Mater. Lett. 8, 87 (2012).
51.Xie, Y., Zhao, X., Chen, Y., Zhao, Q., and Yuan, Q.: Preparation and characterization of porous C-modified anatase titania films with visible light catalytic activity. J. Solid State Chem. 180, 3546 (2007).
52.Hoffman, R.L.: ZnO-channel thin-film transistors: Channel mobility. J. Appl. Phys. 95, 5813 (2004).

Related content

Powered by UNSILO

Characterization of amorphous zinc tin oxide semiconductors

  • Jaana S. Rajachidambaram (a1), Shail Sanghavi (a2), Ponnusamy Nachimuthu (a2), Vaithiyalingam Shutthanandan (a2), Tamas Varga (a2), Brendan Flynn (a3), Suntharampillai Thevuthasan (a4) and Gregory S. Herman (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.