Skip to main content Accessibility help

Characterization and properties of intermetallic Al3Ti alloy synthesized by reactive foil sintering in vacuum

  • Ningxia Wei (a1), Xiaoxiao Han (a2), Xueyi Zhang (a2), Yang Cao (a3), Chunhuan Guo (a1), Zichuan Lu (a1) and Fengchun Jiang (a1)...


A dense monolithic intermetallic Al3Ti alloy was successfully synthesized via reactive sintering in vacuum using TC4 alloy and pure aluminum foils with appropriate initial thickness. Energy dispersive spectroscopy (EDS), x-ray diffractometry (XRD), and scanning electron microscopy (SEM) were used to characterize the phase and microstructure of Al3Ti alloy. Ultrasonic measurement was performed to evaluate the physical property of Al3Ti alloy. Different thermal analysis, thermogravimetry (TG) and differential scanning calorimetry (DSC) were used to assess the thermal property of Al3Ti alloy. The compressive tests were carried out on a universal load frame to determine the mechanical properties, including the compressive strength and failure strain of the fabricated intermetallic Al3Ti alloy. The current results indicated that the density of Al3Ti alloy is slightly higher than the theoretical density, the average Young's modulus is lower than the theoretical value. A trace of aluminum in Al3Ti alloy was detected, which is distinctly affected on the density, Young's modulus and mechanical properties of this titanium aluminide alloy. The stress–strain curves of Al3Ti alloy shows a linear elastic behavior without any plastic deformation, and the fracture features are the mixed fracture of transgranular and intergranular. Some other fundamental physical and mechanical properties of the Al3Ti alloy were also obtained in the present study.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Uenishi, K. and Kobayashi, K.F.: Processing of intermetallic compounds for structural applications at high temperature. Intermetallics 4(8), S95S101 (1996).
2. Moon, K.I. and Lee, K.S.: Development of nanocrystalline Al–Ti alloy powders by reactive ball milling. J. Alloys Compd. 264(1–2), 258266 (1998).
3. Nesper, R.: Intermetallics, Sauthoff, Von G. ed.; Vch Verlagsgesellschaft: Weinheim, 1995. 165 S., Geb. 128.00 Dm.—Isbn 3-527-29320-5 Angewandte Chemie. 108(6), 726–727 (1996).
4. Yamaguchi, M., Umakoshi, Y., and Yamane, T.: Plastic deformation of the intermetallic compound Al3Ti. Philos. Mag. A 55(3), 301315 (1987).
5. Nayak, S.S. and Murty, B.S.: Synthesis and stability of L12–Al3Ti by mechanical alloying. Mater. Sci. Eng., A 367(1–2), 218224 (2004).
6. Ai, T., Liu, F., Feng, X., Yu, Q., Yu, N., Ruan, M., Yuan, X., and Zhang, Y.: Processing, microstructural characterization and mechanical properties of in situ Ti3AlC2/TiAl3 composite by hot pressing. Mater. Sci. Eng., A 610(29), 297300 (2014).
7. Mabuchi, H., Hirukawa, K., Katayama, K., Tsuda, H., and Nakayama, Y.: Formation of ternary L12 compounds in TiAl3-base alloys containing Ag. Scr. Metall. Mater. 24(8), 15531558 (1990).
8. Mazdiyasni, S., Miracle, D., Dimiduk, D., Mendiratta, M., and Subramanian, P.: High temperature phase equilibria of the Ll2 composition in the Al Ti Ni, Al Ti Fe, and Al Ti Cu systems. Scr. Metall. 23(3), 327331 (1989).
9. Mabuchi, H., Hirukawa, K.I., and Nakayama, Y.: Formation of structural L12 compounds in TiAl3-base alloys containing Mn. Scr. Metall. 23(10), 17611765 (1989).
10. Peng, H., Fan, Z., and Wang, D.: In situ Al3Ti–Al2O3 intermetallic matrix composite: Synthesis, microstructure, and compressive behavior. J. Mater. Res. 15(09), 19431949 (2000).
11. Liu, Y.M., Xiu, Z.Y., Wu, G.H., Yang, W.S., Chen, G.Q., and Gou, H.S.: Study on Ti fiber reinforced TiAl3 composite by infiltration. J. Mater. Sci. 44(16), 42584263 (2009).
12. Vecchio, K.S.: Synthetic multifunctional metallic-intermetallic laminate composites. JOM 57(3), 2531 (2005).
13. Harach, D.J. and Vecchio, K.S.: Microstructure evolution in metal–intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air. Metall. Mater. Trans. A 32(6), 14931505 (2001).
14. Price, R.D., Jiang, F., Kulin, R.M., and Vecchio, K.S.: Effects of ductile phase volume fraction on the mechanical properties of Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Mater. Sci. Eng., A 528(7), 31343146 (2011).
15. Mali, V.I., Pavliukova, D.V., Bataev, I.A., Bataev, A.A., Smirnov, A.I., Yartsev, P.S., and Bazarkina, V.V.: Formation of the intermetallic layers in Ti–Al multilayer composites. Adv. Mater. Res. 311–313, 236239 (2011).
16. Aguilar-Virgen, J., Cabrera, A., Umemoto, M., and Calderon, H.: Compressive mechanical properties of nanostructured intermetallic alloys Al3Ti–X (X = Mn or Fe). 509, 6368 (2006).
17. Lee, S.H., Moon, K.I., and Lee, K.S.: Enhancement of the fracture toughness of bulk L12-based (Al + 12.5 at.% M)3Zr (M = Cu, Mn) intermetallics synthesized by mechanical alloying. Intermetallics 14(1), 18 (2006).
18. Jang, H.S., Kang, C.W., Kim, Y., Hong, K.T., and Kim, S.J.: Effects of Mn addition on microstructure and mechanical properties of (Al + x at.% Mn)3Ti intermetallic compounds prepared by mechanical alloying and spark plasma sintering. Intermetallics 12(5), 477485 (2004).
19. Varin, R.A., Zbroniec, L., and Wang, Z.G.: Fracture toughness and yield strength of boron-doped, high (Ti + Mn) L12 titanium trialuminides. Intermetallics 9(3), 195207 (2001).
20. Yamaguchi, M., Umakoshi, Y., and Yamane, T.: Plastic deformation of the intermetallic compound Al3Ti. Philos. Mag. A 55(3), 301315 (1987).
21. Dwivedi, A. and Bradley, J.: Mechanical response of titanium aluminide (TiAl3) (Dynamic Science Inc, Aberdeen MD, 2010).
22. Zhang, J., Wang, T., and Zhu, M.: Chemical kinetics research on the combustion synthesis of TiAl3 . Acta Metall. Sin. 38(10), 10271030 (2002).
23. Wu, Y. and Hwang, S.K.: The effect of yttrium on microstructure and dislocation behavior of elemental powder metallurgy processed TiAl-based intermetallics. Mater. Lett. 58(15), 20672072 (2004).
24. Heilmaier, M., Saage, H., and Eckert, J.: Formation of ODS L12–(Al,Cr)3Ti by mechanical alloying. Mater. Sci. Eng., A 239–240(1), 652657 (1997).
25. Rohatgi, A., Harach, D.J., Vecchio, K.S., and Harvey, K.P.: Resistance-curve and fracture behavior of Ti–Al3Ti metallic–intermetallic laminate (MIL) composites. Acta Mater. 51(10), 29332957 (2003).
26. Adharapurapu, R.R., Vecchio, K.S., Jiang, F., and Rohatgi, A.: Fracture of Ti–Al3Ti metal-intermetallic laminate composites: Effects of lamination on resistance-curve behavior. Metall. Mater. Trans. A 36(11), 32173236 (2005).
27. Goldstein, A.: A simple buoyancy method for measuring computed tomography phantom material densities. Radiology 128(3), 814815 (1978).
28. ASTM E49410: Standard practice for measuring ultrasonic velocity in materials (ASTM International, West Conshohocken, 2010).
29. Kattner, U.R., Lin, J.C., and Chang, Y.A.: Thermodynamic assessment and calculation of the Ti–Al system. Metall. Mater. Trans. A 23(8), 20812090 (1992).
30. Murray, J.L., ed.: Phase Diagrams of Binary Titanium Alloys (ASM International, Metals Park, 1987).
31. Mackowiak, J. and Shreir, L.L.: The nature and growth of interaction layers formed during the reaction between solid titanium and liquid aluminium. J. Less Common Metals. 1(6), 456466 (1959).
32. Sujata, M., Bhargava, S., and Sangal, S.: On the formation of TiAl3 during reaction between solid Ti and liquid Al. J. Mater. Sci. Lett. 16(13), 11751178 (1997).
33. Lee, T.W., Kim, I.K., Chi, H.L., and Kim, J.H.: Growth behavior of intermetallic compound layer in sandwich-type Ti/Al diffusion couples inserted with Al–Si–Mg alloy foil. J. Mater. Sci. Lett. 18(19), 15991602 (1999).
34. Vecchio, K.S., Yu, L.H., and Meyers, M.A.: Shock synthesis of silicides-I. experimentation and microstructural evolution. Acta Metall. Mater. 42(3), 701714 (1994).
35. Meyers, M.A., Yu, L.H., and Vecchio, K.S.: Shock synthesis of silicides-II. Thermodynamics and kinetics. Acta Metall. Mater. 42(3), 715729 (1994).


Related content

Powered by UNSILO

Characterization and properties of intermetallic Al3Ti alloy synthesized by reactive foil sintering in vacuum

  • Ningxia Wei (a1), Xiaoxiao Han (a2), Xueyi Zhang (a2), Yang Cao (a3), Chunhuan Guo (a1), Zichuan Lu (a1) and Fengchun Jiang (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.