Skip to main content Accessibility help

Characterization and properties of electrospun thermoplastic polyurethane blend fibers: Effect of solution rheological properties on fiber formation

  • Hao-Yang Mi (a1), Xin Jing (a1), Brianna R. Jacques (a2), Lih-Sheng Turng (a3) and Xiang-Fang Peng (a4)...


Porous thermoplastic polyurethane (TPU) membranes were produced by the electrospinning process. Two different TPUs and their blends were used to investigate the effects of material composition, solution concentration, and rheological properties on the microstructure, fiber diameter, and fiber diameter distribution of the electrospun membranes. The ratios of hard and soft segments in the solutions were adjusted by varying the blend ratios of TPUs dissolved in N, N-dimethylformamide. The solutions with higher TPU concentrations and more hard segments exhibited a higher viscosity, larger storage and loss moduli, and greater electrospun jet stability. Solutions with concentrations around the critical chain entanglement concentration (Ce) produced bead or beaded fiber structures, while bead-free fibers of a uniform diameter were obtained when the concentration increased to about two times that of Ce. Relationships between the electrospun fiber diameter, the Berry number, and the normalized concentration of the solutions were studied as well.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Mohammadian, M. and Haghi, A.K.: Fabrication of nontoxic filters from regenerated silk fibroin and polyacrylonitrile fibers. Mater. Plast. 49(2), 90 (2012).
2.Wang, H.X., Ding, H., Lee, B., Wang, X.G., and Lin, T.: Polypyrrole-coated electrospun nanofibre recovery of Au(III) from aqueous membranes for solution. J. Membrane Sci. 303(1–2), 119 (2007).
3.Sotoudeh, A., Jahanshahi, G., Jahanshahi, A., Takhtfooladi, M.A., Shabani, I., and Soleimani, M.: Combination of poly L-lactic acid nanofiber scaffold with omentum graft for bone healing in experimental defect in tibia of rabbits. Acta. Cir. Bras. 27(10), 694 (2012).
4.Unnithan, A.R., Barakat, N.A.M., Pichiah, P.B.T., Gnanasekaran, G., Nirmala, R., Cha, Y.S., Jung, C.H., El-Newehy, M., and Kim, H.Y.: Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr. Polym. 90(4), 1786 (2012).
5.Park, J.Y. and Lee, I.H.: Controlled release of ketoprofen from electrospun porous polylactic acid (PLA) nanofibers. J. Polym. Res. 18(6), 1287 (2011).
6.Jamil, H., Batool, S.S., Imran, Z., Usman, M., Rafiq, M.A., Willander, M., and Hassan, M.M.: Electrospun titanium dioxide nanofiber humidity sensors with high sensitivity. Ceram. Int. 38(3), 2437 (2012).
7.Doan, T.Q., Boyle, T.J., Ottley, L.A.M., Hoppe, S.M., and Alam, T.M.: Synthesis, characterization, electrospinning of novel tin amide alkoxides for lithium-ion battery application. Abstr. Pap. Am. Chem. S. 242 (2011).
8.Geng, X.Y., Kwon, O.H., and Jang, J.H.: Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27), 5427 (2005).
9.Han, J., Chen, T.X., Branford-White, C.J., and Zhu, L.M.: Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications. Int. J. Pharm. 382(1–2), 215 (2009).
10.Megelski, S., Stephens, J.S., Chase, D.B., and Rabolt, J.F.: Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22), 8456 (2002).
11.Awal, A., Sain, M., and Chowdhury, M.: Preparation of cellulose-based nano-composite fibers by electrospinning and understanding the effect of processing parameters. Composites Part B 42(5), 1220 (2011).
12.Reneker, D.H. and Yarin, A.L.: Electrospinning jets and polymer nanofibers. Polymer 49(10), 2387 (2008).
13.De Vrieze, S., Van Camp, T., Nelvig, A., Hagstrom, B., Westbroek, P., and De Clerck, K.: The effect of temperature and humidity on electrospinning. J. Mater. Sci. 44(5), 1357 (2009).
14.Huang, Z.M., Zhang, Y.Z., Kotaki, M., and Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223 (2003).
15.Afifi, A.M., Yamane, H., and Kimura, Y.: Effect of polymer molecular weight on the electrospinning of polylactides in entangled and aligned fiber forms. Sen-I Gakkaishi. 66(2), 35 (2010).
16.McKee, M.G., Park, T., Unal, S., Yilgor, I., and Long, T.E.: Electrospinning of linear and highly branched segmented poly(urethane urea)s. Polymer 46(7), 2011 (2005).
17.Vega-Lugo, A.C. and Lim, L.T.: Effects of poly(ethylene oxide) and pH on the electrospinning of whey protein isolate. J. Polym. Sci., Part B: Polym. Phys. 50(16), 1188 (2012).
18.Choi, J.M., Jang, H.C., Hyeon, J.Y., and Sok, J.H.: Fabrication of PCL/MWCNTs nanofiber by electrospinning. Korean J. Met. Mater. 50(10), 763 (2012).
19.Nayak, R., Kyratzis, I.L., Truong, Y.B., Padhye, R., and Arnold, L.: Melt-electrospinning of polypropylene with conductive additives. J. Mater. Sci. 47(17), 6387 (2012).
20.Rwei, S.P. and Huang, C.C.: Electrospinning PVA solution-rheology and morphology analyses. Fiber Polym. 13(1), 44 (2012).
21.Mit-uppatham, C., Nithitanakul, M., and Supaphol, P.: Effects of solution concentration, emitting electrode polarity, solvent type, and salt addition on electrospun polyamide-6 fibers: A preliminary report. Macromol. Symp. 216, 293 (2004).
22.Shenoy, S.L., Bates, W.D., Frisch, H.L., and Wnek, G.E.: Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit. Polymer 46(10), 3372 (2005).
23.McKee, M.G., Wilkes, G.L., Colby, R.H., and Long, T.E.: Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37(5), 1760 (2004).
24.Tong, H.W. and Wang, M.: An investigation into the influence of electrospinning parameters on the diameter and alignment of poly(hydroxybutyrate-co-hydroxyvalerate) fibers. J. Appl. Polym. Sci. 120(3), 1694 (2011).
25.Groth, T., Klosz, K., Campbell, E.J., New, R.R.C., Hall, B., and Goering, H.: Protein adsorption, lymphocyte adhesion and platelet-adhesion activation on polyurethane ureas is related to hard segment content and composition. J. Biomater. Sci., Polym. Ed. 6(6), 497 (1994).
26.Stankus, J.J., Guan, J.J., and Wagner, W.R.: Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. J. Biomed. Mater. Res. Part A 70(4), 603 (2004).
27.Klossner, R.R., Queen, H.A., Coughlin, A.J., and Krause, W.E.: Correlation of Chitosan’s rheological properties and its ability to electrospin. Biomacromolecules 9(10), 2947 (2008).
28.Pakravan, M., Heuzey, M.C., and Ajji, A.: A fundamental study of chitosan/PEO electrospinning. Polymer 52(21), 4813 (2011).
29.Buruaga, L., Munoz, M.E., Irusta, L., Gonzalez, A., and Iruin, J.J.: Role of specific interactions on fiber formation in the electrospinning of poly(vinyl phenol)/poly(vinyl pyrrolidone) blend solutions. J. Appl. Polym. Sci. 114(5), 2922 (2009).
30.Varesano, A., Aluigi, A., Vineis, C., and Tonin, C.: Study on the shear viscosity behavior of keratin/PEO blends for nanofibre electrospinning. J. Polym. Sci., Part B: Polym. Phys. 46(12), 1193 (2008).
31.Pinto, U.A., Visconte, L.L.Y., and Nunes, R.C.R.: Mechanical properties of thermoplastic polyurethane elastomers with mica and aluminum trihydrate. Eur. Polym. J. 37(9), 1935 (2001).
32.Dong, Z.H., Li, Y.B., and Zou, Q.: Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl. Surf. Sci. 255(12), 6087 (2009).
33.Buczek, O., Krowarsch, D., and Otlewski, J.: Thermodynamics of single peptide bond cleavage in bovine pancreatic trypsin inhibitor (BPTI). Protein Sci. 11(4), 924 (2002).
34.Chisca, S., Barzic, A.I., Sava, I., Olaru, N., and Bruma, M.: Morphological and rheological insights on polyimide chain entanglements for electrospinning produced fibers. J. Phys. Chem. B. 116(30), 9082 (2012).
35.Ren, Y.L., Picout, D.R., Ellis, P.R., and Ross-Murphy, S.B.: Solution properties of the xyloglucan polymer from Afzelia africana. Biomacromolecules 5(6), 2384 (2004).
36.Chronakis, I.S. and Ramzi, M.: Isotropic-nematic phase equilibrium and phase separation of kappa-carrageenan in aqueous salt solution: Experimental and theoretical approaches. Biomacromolecules 3(4), 793 (2002).
37.Kopperud, H.M., Hansen, F.K., and Nystrom, B.: Effect of surfactant and temperature on the rheological properties of aqueous solutions of unmodified and hydrophobically modified polyacrylamide. Macromol. Chem. Phys. 199(11), 2385 (1998).
38.Nie, H.R., He, A.H., Zheng, J.F., Xu, S.S., Li, J.X., and Han, C.C.: Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules 9(5), 1362 (2008).
39.Krause, W.E., Bellomo, E.G., and Colby, R.H.: Rheology of sodium hyaluronate under physiological conditions. Biomacromolecules 2(1), 65 (2001).
40.Bordi, F., Colby, R.H., Cametti, C., De Lorenzo, L., and Gili, T.: Electrical conductivity of polyelectrolyte solutions in the semidilute and concentrated regime: The role of counterion condensation. J. Phys. Chem. B 106(27), 6887 (2002).
41.Hong, P.D., Chou, C.M., and He, C.H.: Solvent effects on aggregation behavior of polyvinyl alcohol solutions. Polymer 42(14), 6105 (2001).
42.Tao, J. and Shivkumar, S.: Molecular weight dependent structural regimes during the electrospinning of PVA. Mater. Lett. 61(11–12), 2325 (2007).
43.Rai, P. and Rosen, S.L.: An empirical relation between the Mark-Houwink-Sakurada constants. J. Polym. Sci., Part B: Polym. Phys. 35(12), 1985 (1997).
44.Gupta, P., Elkins, C., Long, T.E., and Wilkes, G.L.: Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46(13), 4799 (2005).
45.McKee, M.G., Elkins, C.L., and Long, T.E.: Influence of self-complementary hydrogen bonding on solution rheology/electrospinning relationships. Polymer 45(26), 8705 (2004).

Characterization and properties of electrospun thermoplastic polyurethane blend fibers: Effect of solution rheological properties on fiber formation

  • Hao-Yang Mi (a1), Xin Jing (a1), Brianna R. Jacques (a2), Lih-Sheng Turng (a3) and Xiang-Fang Peng (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed