Skip to main content Accessibility help

Ceramic composites: A review of toughening mechanisms and demonstration of micropillar compression for interface property extraction

  • Joey Kabel (a1), Peter Hosemann (a1), Yevhen Zayachuk (a2), David E. J. Armstrong (a2), Takaaki Koyanagi (a3), Yutai Katoh (a3) and Christian Deck (a4)...


Ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method for extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ∼2.5 J/m2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. This research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Yanchun Zhou

This paper has been selected as an Invited Feature Paper.



Hide All
1. Phillips, D.C.: The fracture energy of carbon-fibre reinforced glass. J. Mater. Sci. 7, 11751191 (1972).
2. Prewo, K.M. and Brennan, J.J.: High-strength silicon carbide fibre-reinforced glass-matrix composites. J. Mater. Sci. 15, 463468 (1980).
3. Brennan, J.J. and Prewo, K.M.: Silicon carbide fibre reinforced glass-ceramic matrix composites exhibiting high strength and toughness. J. Mater. Sci. 17, 23712383 (1982).
4. Brennan, J.J., Tressler, R.E., Messing, G.L., Pantano, C.G., and Newnham, R.E.: Interfacial characterization of glass and glass-ceramic matrix/nicalon SiC fiber composites. In Tailoring Multiphase and Composite Ceramics (Springer, Boston, Massachusetts, 1986), pp. 549560.
5. Sambell, R.A., Briggs, A., Phillips, D.C., and Bowen, D.H.: Carbon fibre composites with ceramic and glass matrices. Part 2: Continuous fibres. J. Mater. Sci. 7, 676681 (1972).
6. Yin, X.W., Cheng, L.F., Zhang, L.T., Travitzky, N., and Greil, P.: Fibre-reinforced multifunctional SiC matrix composite materials. Int. Mater. Rev. 62, 117172 (2016).
7. Yueh, K. and Terrani, K.A.: Silicon carbide composite for light water reactor fuel assembly applications. J. Nucl. Mater. 448, 380388 (2014).
8. Snead, L.L., Nozawa, T., Ferraris, M., Katoh, Y., Shinavski, R., and Sawan, M.: Silicon carbide composites as fusion power reactor structural materials. J. Nucl. Mater. 417, 330339 (2011).
9. Naslain, R. and Christin, F.: SiC-matrix composite materials for advanced jet engines. MRS Bull. 28, 654658 (2003).
10. Yashiro, S., Ogi, K., and Oshita, M.: High-velocity impact damage behavior of plain-woven SiC/SiC composites after thermal loading. Composites, Part B Eng. 43, 13531362 (2012).
11. Katoh, Y., Snead, L.L., Szlufarska, I., and Weber, W.J.: Radiation effects in SiC for nuclear structural applications. Solid State Mater. Sci. 16, 143152 (2012).
12. Hertzberg, R.W., Vinci, R.P., and Hertzberg, J.L.: Deformation and Fracture Mechanics of Engineering Materials, 5th ed. (John Wiley & Sons, Inc., Hoboken, NJ, 1996).
13. Carter, B.C. and Norton, G.M.: Ceramic Materials (Springer, Boston, MA, 2007).
14. Evans, A.G. and Zok, F.W.: The physics and mechanics of fibre-reinforced brittle matrix composites. J. Mater. Sci. 29, 38573896 (1994).
15. Katoh, Y., Snead, L.L., Henager, C.H., Nozawa, T., Hinoki, T., Iveković, A., Novak, S., and Gonzalez De Vicente, S.M.: Current status and recent research achievements in SiC/SiC composites. J. Nucl. Mater. 455, 387397 (2014).
16. Carter, C.H., Davis, R.F., and Bentley, J.: Kinetics and mechanisms of high-temperature creep in silicon carbide: II, chemically vapor deposited. J. Am. Ceram. Soc. 67, 732740 (1984).
17. Terrani, K.A., Pint, B.A., Parish, C.M., Silva, C.M., Snead, L.L., and Katoh, Y.: Silicon carbide oxidation in steam up to 2 MPa. J. Am. Ceram. Soc. 97, 23312352 (2014).
18. Snead, L.L., Nozawa, T., Katoh, Y., Byun, T.S., Kondo, S., and Petti, D.A.: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371, 329377 (2007).
19. Hinoki, T., Lara-Curzio, E., and Snead, L.L.: Mechanical properties of high purity SiC fiber-reinforced CVI-SiC matrix composites. J. Mater. Res. 11, 391397 (2008).
20. Nozawa, T., Katoh, Y., and Snead, L.L.: The effect of neutron irradiation on the fiber/matrix interphase of silicon carbide composites. J. Nucl. Mater. 384, 195211 (2009).
21. Katoh, Y., Ozawa, K., Shih, C., Nozawa, T., Shinavski, R.J., Hasegawa, A., and Snead, L.L.: Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects. J. Nucl. Mater. 448, 448476 (2014).
22. Zinkle, S.J., Terrani, K.A., Gehin, J.C., Ott, L.J., and Snead, L.L.: Accident tolerant fuels for LWRs: A perspective. J. Nucl. Mater. 448, 374379 (2014).
23. Kerans, R.J. and Hay, R.S.: Interface design for oxidation-resistant ceramic composites. J. Am. Ceram. Soc. 85, 25992632 (2002).
24. Keller, K.A., Mah, T., Parthasarathy, T.A., and Cooke, C.M.: Fugitive interfacial carbon coatings for oxide/oxide composites. J. Am. Ceram. Soc. 83, 329336 (2000).
25. Wendorff, J., Janssen, R., and Claussen, N.: Platinum as a weak interphase for fiber-reinforced oxide-matrix composites. J. Am. Ceram. Soc. 40, 27382740 (1998).
26. Filipuzzi, L., Camus, G., and Naslain, R.: Oxidation mechanisms and kinetics of 1 D-SiC/C/SiC composite materials: I, an experimental approach. J. Am. Ceram. Soc. 47, 459466 (1994).
27. Evans, A.G., Zok, F.W., McMeeking, R.M., and Du, Z.Z.: Models of high-temperature, environmentally assisted embrittlement in ceramic-matrix composites. J. Am. Ceram. Soc. 79, 23452352 (1996).
28. Eckel, A.J., Cawley, J.D., and Parthasarathy, T.A.: Oxidation kinetics of a continuous carbon phase in a nonreactive matrix. J. Am. Ceram. Soc. 78, 972980 (1995).
29. Parthasarathy, T.A., Folsom, C.A., and Zawada, L.P.: Combined effects of exposure to salt (NaCl) water and oxidation on the strength of uncoated and BN-coated Nicalon™ fibers. J. Am. Ceram. Soc. 86, 18121818 (1998).
30. Naslain, R. and Langlais, F.: CVD-processing of ceramic-ceramic composite materials. In Tailoring Multiphase and Composite Ceramics (Springer, Boston, MA, 1986), pp. 145164.
31. Naslain, R., Dugne, O., Guette, A., Sevely, J., Brosse, C.R., Rocher, J-P., and Cotteret, J.: Boron nitride interphase in ceramic-matrix composites. J. Am. Ceram. Soc. 74, 24822488 (1991).
32. Lamon, J.: Chemical vapor infiltrated SiC/SiC composites. In Handbook of Ceramic Composite (Springer, Boston, Massachusetts, 2005), pp. 5576.
33. Khalifa, H.E., Deck, C.P., Gutierrez, O., Jacobsen, G.M., and Back, C.A.: Fabrication and characterization of joined silicon carbide cylindrical components for nuclear applications. J. Nucl. Mater. 457, 227240 (2015).
34. Deck, C.P., Jacobsen, G.M., Sheeder, J., Gutierrez, O., Zhang, J., Stone, J., Khalifa, H.E., and Back, C.A.: Characterization of SiC–SiC composites for accident tolerant fuel cladding. J. Nucl. Mater. 446, 667681 (2015).
35. Bertrand, S., Droillard, C., Pailler, R., Bourrat, X., and Naslain, R.: TEM structure of (PyC/SiC) multilayered interphases in SiC/SiC composites. J. Eur. Ceram. Soc. 20, 113 (2000).
36. Naslain, R.R., Pailler, R.J.F., and Lamon, J.L.: Single and multilayered interphases in SiC/SiC composites exposed to severe environmental conditions: An overview. Int. J. Appl. Ceram. Technol. 7, 263275 (2010).
37. Morscher, G.N., Bryant, D.R., and Tressler, R.E.: Environmental durability of BN-based interphases (for SiC(f)/SiC(m) composites) in H2O-containing atmospheres at intermediate temperatures. Ceram. Eng. Sci. Proc. 18, 525534 (1997).
38. Cofer, C.G. and Economy, J.: Oxidative and hydrolytic stability of boron nitride—A new approach to improving the oxidation resistance of carbonaceous structures. Carbon 33, 389395 (1995).
39. Newsome, G., Snead, L.L., Hinoki, T., Katoh, Y., and Peters, D.: Evaluation of neutron irradiated silicon carbide and silicon carbide composites. J. Nucl. Mater. 371, 7689 (2007).
40. Lamon, J. and Bansal, N.: Ceramic Matrix Composites: Materials, Modeling and Technology (John Wiley & Sons, Hoboken, New Jersey, 2015).
41. Xia, Z. and Li, L.: Understanding interfaces and mechanical properties of ceramic matrix composites. In Advances in Ceramic Matrix Composites (Woodhead Publishing, Sawston, U.K., 2014), pp. 367385.
42. He, M-Y. and Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 31, 34433455 (1989).
43. Dundurs, J.: Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J. Appl. Mech. 36, 650652 (1969).
44. Ahn, B.K.: Interfacial Mechanics in Fiber-Reinforced Composites: Mechanics of Single and Multiple Cracks in CMCs (Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1997), pp. 1160.
45. Braginsky, M. and Przybyla, C.P.: Simulation of crack propagation/deflection in ceramic matrix continuous fiber reinforced composites with weak interphase via the extended finite element method. Compos. Struct. 136, 538545 (2016).
46. Martinez, D. and Gupta, V.: Energy criterion for crack deflection an interface between two orthotropic media. J. Mech. Phys. Solids 42, 12471271 (1994).
47. Liang, Y. and Liechti, K.M.: Toughening mechanisms in mixed-mode interfacial fracture. Int. J. Solids Struct. 32, 957978 (1995).
48. Fleck, N.A.: Crack path selection in a brittle adhesive layer. Int. J. Solids Struct. 27, 16831703 (1991).
49. Isaksson, P. and Stahle, P.: Mode II crack paths under compression in brittle solids—A theory and experimental comparison. Int. J. Solids Struct. 39, 22812297 (2002).
50. Cedric, Z. and Hutchinson, J.W.: Mode II fracture toughness of a brittle adhesive layer. Int. J. Solids Struct. 31, 11331148 (1994).
51. Blackman, B.R.K.: Mode II fracture testing of composites: A new look at an old problem. Eng. Fract. Mech. 73, 24432455 (2006).
52. Handin, J.: On the Coulomb–Mohr failure criterion. J. Geophys. Res. 74, 53435348 (1969).
53. He, M.Y., Anthony, A.G., and Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses. Int. J. Solids Struct. 31, 34433455 (1994).
54. Ozawa, K., Hinoki, T., Nozawa, T., Katoh, Y., Maki, Y., Kondo, S., Ikeda, S., and Kohyama, A.: Evaluation of fiber/matrix interfacial strength of neutron irradiated SiC/SiC composites using hysteresis loop analysis of tensile test. Mater. Trans. 47, 207210 (2006).
55. Hsueh, C.H., Rebillat, F., Lamon, J., and Lara-Curzio, E.: Analyses of fiber push-out tests performed on nicalon/SiC composites with tailored interfaces. Composites, Part B Eng. 5, 13871401 (2008).
56. Rebillat, F., Lamon, J., Naslain, R., Lara-Curzio, E., Ferber, M.K., and Besmann, T.M.: Interfacial bond strength in SiC/C/SiC composite materials, as studied by single-fiber push-out tests. J. Am. Ceram. Soc. 81, 965978 (1998).
57. Hsueh, C.H.: Interfacial debonding and fibre pull-out stresses of fibre-reinforced composites. Mater. Sci. Eng., A 123, 111 (1990).
58. Shetty, D.K.: Shear-lag analysis of fiber push-out (indentation) tests for estimating interfacial friction stress in ceramic matrix composites. J. Am. Ceram. Soc. 71, C107C109 (1988).
59. Lawrence, P.: Some theoretical consideration of fibre pull-out from an elastic matrix. J. Mat. Sci. 7, 16 (1972).
60. Rebillat, F., Lamon, J., and Guette, A.: The concept of a strong interface applied to SiC/SiC composites with a BN interphase. Acta Mater. 48, 46094618 (2000).
61. Mueller, W.M., Moosburger-Will, J., Sause, M.G.R., and Horn, S.: Microscopic analysis of single-fiber push-out tests on ceramic matrix composites performed with Berkovich and flat-end indenter and evaluation of interfacial fracture toughness. J. Eur. Ceram. Soc. 33, 441451 (2013).
62. Shin, C., Jin, H.H., Kim, W.J., and Park, J.Y.: Mechanical properties and deformation of cubic silicon carbide micropillars in compression at room temperature. J. Am. Ceram. Soc. 95, 29442950 (2012).
63. Jaya, B.N. and Jayaram, V.: Fracture testing at small-length scales: From plasticity in Si to brittleness in Pt. J. Mater. Sci. 68, 94108 (2016).
64. Gerberich, W., Michler, J., Mook, W., Ghisleni, R., Östlund, F., Stauffer, D., and Ballarini, R.: Scale effects for strength, ductility, and toughness in ‘brittle’ materials. J. Mater. Res. 24, 898906 (2009).
65. Dohr, J., Armstrong, D.E.J., Tarleton, E., Couvant, T., and Lozano-Perez, S.: The influence of surface oxides on the mechanical response of oxidized grain boundaries. Thin Solid Films 632, 1722 (2017).
66. Armstrong, D.E.J., Wilkinson, A.J., and Roberts, S.G.: Micro-mechanical measurements of fracture toughness of bismuth embrittled copper grain boundaries. Philos. Mag. Lett. 91, 394400 (2011).
67. Hosemann, P.: Small-scale mechanical testing on nuclear materials: Bridging the experimental length-scale gap. Scr. Mater. 143, 161168 (2018).
68. Shih, C., Katoh, Y., Leonard, K.J., Bei, H., and Lara-Curzio, E.: Determination of interfacial mechanical properties of ceramic composites by the compression of micro-pillar test specimens. J. Mater. Sci. 48, 52195224 (2013).
69. Kabel, J., Yang, Y., Balooch, M., Howard, C., Koyanagi, T., Terrani, K.A., Katoh, Y., and Hosemann, P.: Micro-mechanical evaluation of SiC–SiC composite interphase properties and debond mechanisms. Composites, Part B Eng. 131, 118 (2017).
70. Tattersall, H.G. and Tappin, G.: The work of fracture and its measurement in metals, ceramics and other materials. J. Mater. Sci. 1, 296301 (1966).
71. Anaka, A., Shibayama, T., Takeda, S., and Yokoyama, M.: Recent progress of Hi-nicalon type S development. Ceram. Eng. Sci. Proc. 24, 217223 (2003).
72. Ichikawa, H.: Development of high performance SiC fibers derived from polycarbosilian using electron beam irradiation curing-a review. J. Ceram. Soc. 114, 455460 (2006).
73. Sauder, C. and Lamon, J.: Tensile creep behavior of SiC-based fibers with a low oxygen content. J. Am. Ceram. Soc. 90, 11461156 (2007).
74. Sauder, C., Brusson, A., and Lamon, J.: Influence of interface characteristics on the mechanical properties of Hi-nicalon type-S or tyranno-SA3 fiber-reinforced SiC/SiC minicomposites. Int. J. Appl. Ceram. Technol. 7, 291303 (2010).
75. Katoh, Y., Snead, L.L., Nozawa, T., Kondo, S., and Busby, J.T.: Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures. J. Nucl. Mater. 403, 4861 (2010).
76. Karthik, C., Kane, J., Butt, D.P., Windes, W.E., and Ubic, R.: In situ transmission electron microscopy of electron-beam induced damage process in nuclear grade graphite. J. Nucl. Mater. 412, 321326 (2011).
77. Karthik, C., Kane, J., Butt, D.P., Windes, W.E., and Ubic, R.: Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites. Carbon 86, 124131 (2015).
78. Takeuchi, M., Muto, S., Tanabe, T., Kurata, H., and Hojou, K.: Structural change in graphite under electron irradiation at low temperatures. J. Nucl. Mater. 271–272, 280284 (1999).
79. Snead, L.L., Burchell, T.D., and Katoh, Y.: Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature. J. Nucl. Mater. 381, 5561 (2008).
80. Liu, Z., Zhang, S.M., Yang, J.R., YangLiu, J.Z., Yang, Y.L., and Zheng, Q.S.: Interlayer shear strength of single crystalline graphite. Acta Mech. Sin. 28, 978982 (2012).
81. Sakai, M. and Bradt, R.C.: Fracture toughness anisotropy of a pyrolytic carbon. J. Mater. Sci. 21, 14911501 (1986).
82. Kerans, R.J., Parthasarathy, T.A., Rebillat, F., and Lamon, J.: Interface properties in high-strength nicalon/C/SiC composites, as determined by rough surface analysis of fiber push-out tests. J. Am. Ceram. Soc. 81, 18811887 (1998).
83. Ritchie, R.O.: Fatigue and fracture of pyrolytic carbon: A damage-tolerant approach to structural integrity and life prediction in ceramic heart valve protheses. J. Heart. Valve Dis. 5, S9S31 (1996).
84. Katoh, Y., Snead, L.L., Henager, C.H., Hasegawa, A., Kohyama, A., Riccardi, B., and Hegeman, H.: Current status and critical issues for development of SiC composites for fusion applications. J. Nucl. Mater. 367–370, 659671 (2007).
85. Yang, W., Kohyama, A., Noda, T., Katoh, Y., Hinoki, T., Araki, H., and Yu, J.: Interfacial characterization of CVI-SiC/SiC composites. J. Nucl. Mater. 311, 10881092 (2002).
86. Hinoki, T.: Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique. J. Nucl. Mater. 263, 15671571 (1998).
87. Bertrand, S., Pailler, R., and Lamon, J.: Influence of strong fiber/coating interfaces on the mechanical behavior and lifetie of Hi-nicalon/(PyC/SiC)n/SiC minicomposites. J. Am. Ceram. Soc. 84, 787794 (2001).


Ceramic composites: A review of toughening mechanisms and demonstration of micropillar compression for interface property extraction

  • Joey Kabel (a1), Peter Hosemann (a1), Yevhen Zayachuk (a2), David E. J. Armstrong (a2), Takaaki Koyanagi (a3), Yutai Katoh (a3) and Christian Deck (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed