Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-01T23:03:27.347Z Has data issue: false hasContentIssue false

Catalytic effects on carbon/carbon composites fabricated by a film boiling chemical vapor infiltration process

Published online by Cambridge University Press:  31 January 2011

H. Okuno
Affiliation:
CRPP/CNRS, Avenue Dr Albert Schweitzer, 33600 Pessac, France
M. Trinquecoste
Affiliation:
CRPP/CNRS, Avenue Dr Albert Schweitzer, 33600 Pessac, France
A. Derré
Affiliation:
CRPP/CNRS, Avenue Dr Albert Schweitzer, 33600 Pessac, France
M. Monthioux
Affiliation:
CEMES/CNRS, 29, rue Jeanne Marvig, 31055 Toulouse Cedex 4, France
P. Delhaès
Affiliation:
CRPP/CNRS, Avenue Dr Albert Schweitzer, 33600 Pessac, France
Get access

Abstract

Chemical vapor infiltration (CVI) has been widely studied under several conditions to obtain C/C composites. A “film boiling technique” (so-called Kalamazoo), by the use of liquid precursor, based on thermal gradient CVI has been recently developed as one of the very effective techniques to increase the carbon yield and the densification rate. A small cold wall type laboratory reactor has been realized to analyze the kinetics of reactions and the deposited pyrocarbon matrix. In this study, ferrocene, as the source of catalyst, is mixed to the liquid precursor to induce a catalytic effect on the film boiling technique since the transition metals are known to increase the carbon deposition rate. In addition to an important increase of the densification rate, it is revealed that the deposition mechanism and microtextures are completely modified by the presence of catalyst, with the presence of multiwall nanotubes within the matrix. A model has been adapted from Allendorff and Hunt's work to interpret this peculiar deposition mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Golecki, I., Mater. Sci. Eng. R20, 37, 124 (1997).Google Scholar
2.Bruneton, E., Narcy, B., and Oberlin, A., Carbon 35, 1593 (1997).CrossRefGoogle Scholar
3.Delhaés, P., inEURO-CVD 11, edited by Allendorf, M.D. and Bernard, C. (Electrochemical Society Proceedings 97-25, Penning-ton, NJ, 1997), pp. 486, 495.Google Scholar
4.Zielinski, R.E. and Grow, D.T., Carbon 30, 925 (1992).CrossRefGoogle Scholar
5.Rodriguez, N.M., Chambers, A., and Baker, R.T.K., Langmuir 11, 3862 (1995).CrossRefGoogle Scholar
6.Tesner, P.A., inChemistry and Physics of Carbon, edited by Thrower, P.A. (Marcel Dekker, New York, 1984), Vol. 19, Chap. 2.Google Scholar
7.Robertson, S.D., Carbon 8, 365, 374 (1970).CrossRefGoogle Scholar
8.Allendorf, M.D., Hurt, R.H., and Yang, N., J. Mater. Res. 8, 651 (1993).CrossRefGoogle Scholar
9.Rovillain, D., Trinquecoste, M., Bruneton, E., Derré, A., David, P., and Delhaés, P., Carbon 39, 1355 (2001).CrossRefGoogle Scholar
10.Goma, J. and Oberlin, A., Carbon 24, 135 (1986).CrossRefGoogle Scholar
11.Rovillain, D., Ph.D. Thesis, Bordeau I University, Bordeaux, France (1999).Google Scholar
12.Pierson, H.O. and Liberman, M.L., Carbon 13, 159 (1975).CrossRefGoogle Scholar
13.Bourrat, X., Trouvat, B., Limousin, G., Vignoles, G., and Doux, F., J. Mater. Res. 15, 42, 101 (2000).CrossRefGoogle Scholar
14.Monthioux, M. (unpublished results).Google Scholar
15.Baker, R.T., Carbon 27, 315 (1989).CrossRefGoogle Scholar
16.Kim, K.S., Rodriguez, N.S., and Baker, R.T.K., J. Catal. 134, 253 (1992).CrossRefGoogle Scholar
17.Ruston, W.R., Warzee, M., Hennaut, J., and Waty, J., Carbon, 7, 47 (1969).CrossRefGoogle Scholar
18.Oya, A. and Otani, S., Carbon, 17, 131 (1979).CrossRefGoogle Scholar
19.Gaucher, H., Ph.D. Thesis, Orléans University, Orléans, France (1997).Google Scholar
20.Hurt, R.H. and Allendorf, M.D., AIChE J. 37, 1485 (1991).CrossRefGoogle Scholar
21.Sen, R., Govindaraj, A., and Rao, C.N.R., Chem. Phys. Lett. 267, 276 (1997).CrossRefGoogle Scholar
22.Grobert, N., Hsu, W.K., Zhu, Y.Q., Hare, J.P., Kroto, H.W., Walton, B.R.M., Terrones, M., Terrones, H., Redlich, P., Rühle, M., Escudero, R., and Morales, F., Appl. Phys. Lett. 75, 3363, 3365 (1999).CrossRefGoogle Scholar
23.Tibbetts, G.G., Devour, M.G., and Rodda, E.J., Carbon 25, 367 (1987).CrossRefGoogle Scholar
24.McAllister, P. and Wolf, E.E., Carbon 30, 189 (1992).CrossRefGoogle Scholar
25.Griffiths, S.K. and Nilson, R.H., inEURO-CVD 11, edited by Allendorf, M.D. and Bernard, C. (Electrochemical Society Proceedings 97-25, Pennington, NJ, 1997), pp. 544, 551.Google Scholar
26.Chung, D.D.L., Carbon 39, 1119 (2001).CrossRefGoogle Scholar