Skip to main content Accessibility help

A C3N4/Bi2WO6 organic–inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity

  • Meng Wang (a1), Minghao Fang (a1), Chao Tang (a1), Lina Zhang (a1), Zhaohui Huang (a1), Yan'gai Liu (a1) and Xiaowen Wu (a1)...


C3N4/Bi2WO6 heterojunction photocatalysts were successfully synthesized using consecutive hydrothermal and calcination processes. These photocatalysts were characterized using x-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, x-ray photoelectron spectroscopy, and photoluminescence measurements. The results of these measurements indicated that the Bi2WO6 nanoparticles were approximately 30–50 nm and uniformly distributed on the surface of C3N4 lamellar structures. The 20% C3N4/Bi2WO6 displayed enhanced visible-light absorption from 432 nm to 468 nm. Photocatalytic tests also revealed that the 20% C3N4/Bi2WO6 photocatalyst exhibited significantly enhanced photocatalytic activity compared to that of pure C3N4 and Bi2WO6 under irradiation by visible light (λ > 420 nm). Furthermore, the excellent photocatalytic efficiency of the 20% C3N4/Bi2WO6 photocatalyst was determined to be related to the formation of C3N4/Bi2WO6 heterojunctions, and their presence was found to be generally beneficial for the separation of photogenerated electron–hole pairs.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Chen, D., Wang, K., Hong, W., Zong, R., Yao, W., and Zhu, Y.: Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Appl. Catal., B 166, 366373 (2015).
2.Zhu, S., Xu, T., Fu, H., Zhao, J., and Zhu, Y.: Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ. Sci. Technol. 41(17), 62346239 (2007).
3.Wang, Y., Bai, X., Pan, C., He, J., and Zhu, Y.: Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J. Mater. Chem. 22(23), 1156811573 (2012).
4.Chen, S., Hu, Y., Jiang, X., Meng, S., and Fu, X.: Fabrication and characterization of novel Z-scheme photocatalyst WO3/g-C3N4 with high efficient visible light photocatalytic activity. Mater. Chem. Phys. 149, 512521 (2015).
5.Tian, N., Huang, H., Guo, Y., He, Y., and Zhang, Y.: A g-C3N4/Bi2O2CO3 composite with high visible-light-driven photocatalytic activity for rhodamine B degradation. Appl. Surf. Sci. 322, 249254 (2014).
6.Zhang, L., Wang, H., Chen, Z., Wong, P.K., and Liu, J.: Bi2WO6 micro/nano-structures: Synthesis, modifications and visible-light-driven photocatalytic applications. Appl. Catal., B 106(1), 113 (2011).
7.Wu, L., Bi, J., Li, Z., Wang, X., and Fu, X.: Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis. Catal. Today 131(1), 1520 (2008).
8.Bai, X., Sun, C., Wu, S., and Zhu, Y.: Enhancement of photocatalytic performance via a P3HT-g-C3N4 heterojunction. J. Mater. Chem. A 3(6), 27412747 (2015).
9.Tian, N., Huang, H., Zhang, Y., and He, Y.: Enhanced photocatalytic activities on Bi2O2CO3/ZnWO4 nanocomposites. J. Mater. Res. 29(05), 641648 (2014).
10.Fu, H., Zhang, L., Yao, W., and Zhu, Y.: Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process. Appl. Catal., B 66(1), 100110 (2006).
11.Wang, M., Qiao, Z., Fang, M., Huang, Z., Liu, Y.G., Wu, X., Tang, C., Tang, H., and Zhu, H.: Synthesis of Er-doped Bi2WO6 and enhancement in photocatalytic activity induced by visible light. RSC Adv. 5(115), 9488794894 (2015).
12.Tian, N., Huang, H., He, Y., Guo, Y., Zhang, T., and Zhang, Y.: Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic–inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans. 44(9), 42974307 (2015).
13.Chai, B., Zou, F., and Chen, W.: Facile synthesis of Ag3PO4/C3N4 composites with improved visible light photocatalytic activity. J. Mater. Res. 30(08), 11281136 (2015).
14.Tian, N., Huang, H., He, Y., Guo, Y., and Zhang, Y.: Organic–inorganic hybrid photocatalyst g-C3N4/Ag2CO3 with highly efficient visible-light-active photocatalytic activity. Colloids Surf., A 467, 188194 (2015).
15.Li, Y., Wu, S., Huang, L., Xu, H., Zhang, R., Qu, M., Gao, Q., and Li, H.: g-C3N4 modified Bi2O3 composites with enhanced visible-light photocatalytic activity. J. Phys. Chem. Solids 76, 112119 (2015).
16.Wu, S.Z., Li, K., and Zhang, W.D.: On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 324, 324331 (2015).
17.Fu, J., Chang, B., Tian, Y., Xi, F., and Dong, X.: Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: In situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A 1(9), 30833090 (2013).
18.Ke, Y., Guo, H., Wang, D., Chen, J., and Weng, W.: ZrO2/g-C3N4 with enhanced photocatalytic degradation of methylene blue under visible light irradiation. J. Mater. Res. 29(20), 24732482 (2014).
19.Jiang, D., Chen, L., Zhu, J., Chen, M., Shi, W., and Xie, J.: Novel p–n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: Facile synthesis and enhanced photocatalytic activity. Dalton Trans. 42(44), 1572615734 (2013).
20.Zhang, L., Wong, K.H., Chen, Z., Jimmy, C.Y., Zhao, J., Hu, C., Chan, C.Y., and Wong, P.K.: AgBr-Ag-Bi2WO6 nanojunction system: A novel and efficient photocatalyst with double visible-light active components. Appl. Catal., A 363(1), 221229 (2009).
21.Fu, H., Pan, C., Zhang, L., and Zhu, Y.: Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Mater. Res. Bull. 42(4), 696706 (2007).
22.Xu, J., Ao, Y., and Chen, M.: A simple method for the preparation of Bi2WO6-reduced graphene oxide with enhanced photocatalytic activity under visible light irradiation. Mater. Lett. 92, 126128 (2013).
23.Ma, D.K., Zhou, S.M., Hu, X., Jiang, Q.R., and Huang, S.M.: Hierarchical BiOI and hollow Bi2WO6 microspheres: Topochemical conversion and photocatalytic activities. Mater. Chem. Phys. 140(1), 1115 (2013).


Related content

Powered by UNSILO

A C3N4/Bi2WO6 organic–inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity

  • Meng Wang (a1), Minghao Fang (a1), Chao Tang (a1), Lina Zhang (a1), Zhaohui Huang (a1), Yan'gai Liu (a1) and Xiaowen Wu (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.