Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-19T01:15:21.587Z Has data issue: false hasContentIssue false

Bisethylacetoacetato Cu(II) as a novel metal-organic precursor for Cu film production by plasma-enhanced chemical vapor deposition toward ultra-large-scale integration metallization

Published online by Cambridge University Press:  31 January 2011

Soon T. Hwang
Affiliation:
Department of Chemistry, Chung-Ang University, Seoul, Korea 156–756
Ilwun Shim
Affiliation:
Department of Chemistry, Chung-Ang University, Seoul, Korea 156–756
Kyung O. Lee
Affiliation:
Division of Chemical Engineering, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, Korea 130–650
Kyeong S. Kim
Affiliation:
Division of Chemical Engineering, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, Korea 130–650
Ju H. Kim
Affiliation:
Division of Chemical Engineering, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, Korea 130–650
Guang J. Choi*
Affiliation:
Division of Chemical Engineering, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, Korea 130–650
Young S. Cho
Affiliation:
Division of Chemical Engineering, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, Korea 130–650
Hyungsoo Choi
Affiliation:
Beckman Institute, University of Illinois, Urbana, Illinois 61801–2991
*
a) Address all correspondence to this author.
Get access

Abstract

Bisethylacetoacetato Cu(II), referred to as Cu(etac)2, was synthesized and used as a novel metal-organic precursor to produce Cu films by PECVD processing. Cu(etac)2 is a nonfluoride compound that is solid at room temperature with reasonable volatility at 120–150 °C of 0.8 Torr. Effects of selected process variables on the characteristics of Cu film deposition were studied. Considered variables were plasma power, hydrogen flow rate, deposition time, substrate temperature, and precursor temperature. The process conditions to give Cu films of a high quality were determined. The electrical resistivity approached 2 μΩ · cm as the Cu film thickness became greater than 2500 Å. The conformality of the Cu film deposition by PECVD was sufficient to result in complete via-hole fillings of wafers patterned for 256 Mb DRAM.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Microelectronic Materials and Processes, edited by Levy, R. A. (NATO ASI Series, Kluwer Academic Pub., Netherlands, 1989), pp. 275, 319.CrossRefGoogle Scholar
2.Harper, J. M. E., Colgan, E. G., Hu, C-K., Hummel, J.P., Buchwalter, L. P., and Uzoh, C. E., MRS Bull. Aug., 23 (1994).CrossRefGoogle Scholar
3.van Hemert, R. L., Spendlove, L. B., and Sievers, R. E., J. Elec-trochem. Soc. 112 (11), 1123 (1965).CrossRefGoogle Scholar
4.Jain, A., Chi, K. M., Kodas, T. T., Hampden-Smith, M. J., Kodas, T. T., Farkas, J., Paffett, M. F., and Farr, J.D., SPIE 1596, 23 (1991).Google Scholar
5.Temple, D. and Reisman, A., J. Electrochem. Soc. 136, 3525 (1989).CrossRefGoogle Scholar
6.Arita, Y., Mater. Res. Soc. Symp. Proc. 335 (1990).Google Scholar
7.Cohen, S. L., Liehr, M., and Kasi, S., Appl. Phys. Lett. 60 (13), 50 (1992).CrossRefGoogle Scholar
8.Fine, S. M., Dyer, P. N., Norman, J. A. T., Muratore, B. A., and Iampietro, R. L., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L. V., Jensen, K. F., Dubois, L. H., and Gross, M. E. (Mater. Res. Soc. Symp. Proc. 204, Pittsburgh, PA, 1991), p. 415.Google Scholar
9.Li, H., Eisenbraun, E. T. and Kaloyeros, A. E., J. Vac. Sci. Technol. B 10 (4), 1337 (1992).CrossRefGoogle Scholar
10.Norman, J. A. T., Muratore, B. A., Dyer, P. N., Roberts, D. A., and Hochberg, A. K., J. Phys. IV 1.C2 271 (1991).Google Scholar
11.Zheng, B., Eisenbraun, E. T., Liu, J., and Kaloyeros, A. E., Appl. Phys. Lett. 61 (18), 2175 (1991).CrossRefGoogle Scholar
12.Eisenbraum, E. T., Zheng, B., Dundon, C. P., Ding, P. J., and Kaloyeros, A. E., Appl. Phys. Lett. 60 (25), 3126 (1992).CrossRefGoogle Scholar
13.Stumm, T. H. and van den Bergh, H., Mater. Sci. Eng. B23, 48 (1994).CrossRefGoogle Scholar
14.Choi, H., Lim, J. C., and Hwang, S. T., A study on the synthesis of metalorganic CVD precursors for thin films in integrated circuits, KIST research report UCN910–4839–6 (1993).Google Scholar
15.Graddon, D. P., J. Inorg. Nucl. Chem. 14, 161 (1960).CrossRefGoogle Scholar
16.Perrin, D. D. and Armarego, W. L. F., Purification of Laboratory Chemicals, 3rd ed. (Pergamon Press, New York, 1988), pp. 63, 386.Google Scholar
17.Lecohier, B., Calpini, B., Philippoz, J. M., and van den Bergh, H., J. Electrochem. Soc. 140 (3), 789 (1993).CrossRefGoogle Scholar
18.Chemical Vapor Deposition: Principles and Applications, edited by Hitchman, M. L. and Jensen, K. F., 1st ed. (Academic Press, New York, 1993), pp. 31, 90.Google Scholar