Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T08:36:06.572Z Has data issue: false hasContentIssue false

Biomimetic nanocoating promotes osteoblast cell adhesion on biomedical implants

Published online by Cambridge University Press:  31 January 2011

Fidele Likibi
Affiliation:
Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506
Bingbing Jiang
Affiliation:
Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506
Bingyun Li*
Affiliation:
Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, and Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia 26506; and WVNano Initiative, Morgantown, West Virginia 26506
*
a)Address all correspondence to this author. e-mail: bli@hsc.wvu.edu
Get access

Abstract

Implantation of dental and orthopaedic devices is affected by delayed or weak implant-bone integration and inadequate new bone formation. Innovative approaches have been sought to enhance implant-bone interaction to achieve rapid osseointegration. The aim of this study was to develop biomimetic polypeptide nanocoatings and to evaluate cell adhesion, proliferation, morphology, and biocompatibility of polypeptide nanocoatings on implant surfaces. A recently developed nanotechnology, i.e., electrostatic self-assembly, was applied to build polypeptide nanocoatings on implant models, i.e., stainless steel discs. Our in vitro tests using human osteoblast cells revealed that substantially more (one order magnitude higher) osteoblast cells were attached to polypeptide-coated, stainless steel discs than to uncoated discs within the first few hours of contact. The developed biomimetic nanocoatings may have great potential for dental and orthopaedic applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Albrektsson, T., Johansson, C.: Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 10, S96 2001Google ScholarPubMed
2Van Luyn, M.J.A., Van Wachem, P.B., Leta, R., Blaauw, E.H., Nieuwenhuis, P.: Modulation of the tissue reaction to biomaterials. J. Mater. Sci.-Mater. Med. 5, 671 1994CrossRefGoogle Scholar
3Kalfas, H.I.: Principles of bone healing. Neurosurg. Focus 10(4), E1 2001CrossRefGoogle ScholarPubMed
4Kowalski, R.J., Lisa, A., Ferrara, L.A., Benzel, E.C.: Biomechanics of bone fusion. Neurosurg. Focus 10(4), E2 2001CrossRefGoogle ScholarPubMed
5Handbook of Polyelectrolytes and Their Applications, edited by S.K. Tripathy, J. Kumar, and H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, CA, 2002), Vol. 1Google Scholar
6Decher, G.: Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 5330 1232 1997CrossRefGoogle Scholar
7Li, B., Haynie, D.T.: Multilayer biomimetics: Reversible covalent stabilization of a nanostructured biofilm. Biomacromolecules 5(5), 1667 2004CrossRefGoogle ScholarPubMed
8Li, B., Haynie, D., Palath, N., Janisch, D.: Nano-scale biomimetics: Fabrication and optimization of stability of peptide-based thin films. J. Nanosci. Nanotechnol. 12(5), 2042 2005CrossRefGoogle Scholar
9Li, B., Rozas, J., Haynie, D.: Structural stability of polypeptide nanofilms under extreme conditions. Biotechnol. Progr. 22(1), 111 2006CrossRefGoogle ScholarPubMed
10Ding, B., Kim, J., Kimura, E., Shiratori, S.: Layer-by-layer structured films of TiO2 nanoparticles and poly(acrylic acid) on electrospun nanofibers. Nanotechnol. 15, 913 2004CrossRefGoogle Scholar
11Chung, A.J., Rubner, M.F.: Methods of loading and releasing low molecular weight cationic molecules in weak polyelectrolyte multilayer films. Langmuir 18, 1176 2002CrossRefGoogle Scholar
12Wood, K.C., Boedicker, J.Q., Lynn, D.M., Hammond, P.T.: Tunable drug release from hydrolytically degradable layer-by-layer thin films. Langmuir 21, 1603 2005CrossRefGoogle ScholarPubMed
13Sukhorukov, G.B., Brumen, M., Donath, E., Möhwald, H.: Hollow polyelectrolyte shells: Exclusion of polymers and Donnan equilibrium. J. Phys. Chem. B 103, 6434 1999CrossRefGoogle Scholar
14Fang, M., Grant, P.S., McShane, M.J., Sukhorukov, G.B., Golub, V.O., Lvov, Y.M.: Magnetic bio/nanoreactor with multilayer shells of glucose oxidase and inorganic nanoparticles. Langmuir 18(16), 6338 2002CrossRefGoogle Scholar
15Ogawa, T., Ding, B., Sone, Y., Shiratori, S.: Super-hydrophobic surface of layer-by-layer structured films coated electrospun nanofibers. Nanotechnol. 18, 165607 2007CrossRefGoogle Scholar
16Martin, J.Y., Schwartz, Z., Hummert, T.W.: Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast like-cells. J. Biomed. Mater. Res. 29, 389 1995CrossRefGoogle ScholarPubMed
17Bagambisa, F.B., Kappert, H.F., Schilli, W.: Cellular and molecular events at the implant interface. J. Cran. Max. Fac. Surg. 22, 12 1994CrossRefGoogle ScholarPubMed
18Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, G.E.: Geometric control of cell life and death. Science 276, 1425 1997CrossRefGoogle ScholarPubMed
19Davies, J.E., Causton, B., Bovell, Y., Davy, K., Sturt, C.S.: The migration of osteoblasts over substrata of discrete surface charge. Biomaterials 7, 231 1986Google ScholarPubMed
20van den Beucken, J.J.J.P., Walboomers, X.F., Leeuwenburgh, S.C.G., Vos, M.R.J., Sommerdijk, N.A.J.M., Nolte, R.J.M., Jansen, J.A.: Multilayered DNA coatings: In vitro bioactivity studies and effects on osteoblast-like cell behavior. Acta Biomater. 3(4), 587 2007CrossRefGoogle ScholarPubMed
21Tang, Z.Y., Wang, Y., Podsiadlo, P., Kotov, N.A.: Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mater. 18(24), 3203 2006CrossRefGoogle Scholar
22Zhu, H.G., Ji, J., Shen, J.C.: Osteoblast growth promotion by protein electrostatic self-assembly on biodegradable poly(lactide). J. Biomater. Sci., Polym. Ed. 16(6), 761 2005CrossRefGoogle ScholarPubMed
23Zhu, Y.B., Gao, C.Y., He, T., Liu, X.Y., Shen, J.C.: Layer-by-layer assembly to modify poly(L-lactic acid) surface toward improving its cytocompatibility to human endothelial cells. Biomacromolecules 4(2), 446 2003CrossRefGoogle ScholarPubMed
24Tajima, S., Chu, J.S.F., Li, S., Komvopoulos, K.: Differential regulation of endothelial cell adhesion, spreading, and cytoskeleton on low-density polyethylene by nanotopography and surface chemistry modification induced by argon plasma treatment. J. Biomed. Mater. Res. 84A(3), 828 2008CrossRefGoogle Scholar
25Jimbo, R., Sawase, T., Baba, K., Kurogi, T., Shibata, Y., Atsuta, M.: Enhanced initial cell responses to chemically modified anodized titanium. Clin. Implant Dent. Relat. Res. 10(1), 55 2008CrossRefGoogle ScholarPubMed
26Kirchhof, K., Groth, T.: Surface modification of biomaterials to control adhesion of cells. Clin. Hemorheol. Microcirc. 39(1-4), 247 2008CrossRefGoogle ScholarPubMed
27Brunot, C., Grosgogeat, B., Picart, C., Lagneau, C., Jaffrezic-Renault, N., Ponsonnet, L.: Response of fibroblast activity and polyelectrolyte multilayer films coating titanium. Dent. Mater. 24(8), 1025 2008CrossRefGoogle ScholarPubMed
28Sinha, P.K., Morris, F., Shah, S.A., Tuan, R.S.: Surface composition of orthopaedic implant metals regulates cell attachment, spreading, and cytoskeletal organization of primary human osteoblasts in vitro. Clin. Orthop. Relat. Res. 305, 258 1994CrossRefGoogle Scholar
29Schwartz, Z., Boyan, B.D.: Underlying mechanisms at the bone-biomaterial interface. J. Cell. Biochem. 56(3), 340 1994CrossRefGoogle ScholarPubMed
30Sul, Y.T., Johansson, C., Byon, E., Albrektsson, T.: The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 26, 6720 2005CrossRefGoogle ScholarPubMed
31Giavaresi, G., Branda, F., Causa, F., Luciani, G., Fini, M., Aldini, N. Nicoli, Rimondini, L., Ambrosio, L., Giardino, R.: Poly(2-hydroxyethyl methacrylate) biomimetic coating to improve osseointegration of a PMMA/HA/glass composite implant: In vivo mechanical and histomorphometric assessments. Int. J. Artif. Organs 27, 674 2004CrossRefGoogle ScholarPubMed
32Biggs, M.J., Richards, R.G., Gadegaard, N., Wilkinson, C.D., Dalby, M.J.: Regulation of implant surface cell adhesion: Characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates. J. Orthop. Res. 25, 273 2007CrossRefGoogle ScholarPubMed
33Liu, X., Chu, P.K., Ding, C.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng., R 47(3–4), 49 2004CrossRefGoogle Scholar
34Anselme, K., Linez, P., Bigerelle, M., Maguer, D. Le, Maguer, A. Le, Hardouin, P., Hildebrand, H.F., Iost, A., Leroy, J.M.: The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials 21(15), 1567 2000CrossRefGoogle ScholarPubMed
35Lincks, J., Boyan, B.D., Blanchard, C.R., Lohmann, C.H., Liu, Y., Cochran, D.L., Dean, D.D., Schwartz, Z.: Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 19(23), 2219 1998CrossRefGoogle ScholarPubMed
36Saldana, L., Vilaboa, N., Valles, G., Gonzalez-Cabrero, J., Munuera, L.: Osteoblast response to thermally oxidized Ti6Al4V alloy. J. Biomed. Mater. Res. A 73(1), 97 2005CrossRefGoogle ScholarPubMed
37Ma, Z.W., Mao, Z.W., Gao, C.Y.: Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf., B 60(2), 137 2007CrossRefGoogle ScholarPubMed
38Liu, Z.H., Jiao, Y.P., Zhang, Z.Y., Zhou, C.R.: Surface modification of poly(L-lactic acid) by entrapment of chitosan and its derivatives to promote osteoblasts-like compatibility. J. Biomed. Mater. Res. A 83(4), 1110 2007CrossRefGoogle ScholarPubMed
39Lopez-Perez, P.M., Marques, A.P., Silva, R.M.P. da, Pashkuleva, I., Reis, R.L.: Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells. J. Mater. Chem. 17(38), 4064 2007CrossRefGoogle Scholar
40Baxter, L.C., Frauchiger, V., Textor, M., Gwynn, I. ap, Richards, R.G.: Fibroblast and osteoblast adhesion and morphology on calcium phosphate surfaces. Eur. Cell. Mater. 4, 1 2002CrossRefGoogle ScholarPubMed
41Hynes, R.O.: Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69(1), 11 1992CrossRefGoogle ScholarPubMed
42Huttenlocher, A., Sandborg, R.R., Horwitz, A.F.: Adhesion in cell migration. Curr. Opin. Cell Biol. 7(5), 697 1995CrossRefGoogle ScholarPubMed
43Gronowicz, G., McCarthy, M.B.: Response of human osteoblasts to implant materials: Integrin-mediated adhesion. J. Orthop. Res. 14(6), 878 1996CrossRefGoogle ScholarPubMed
44Liu, L.Y., Chen, G., Chao, T., Ratner, B.D., Sage, E.H., Jiang, S.Y.: Reduced foreign body reaction to implanted biomaterials by surface treatment with oriented osteopontin. J. Biomater. Sci., Polym. Ed. 19(6), 821 2008CrossRefGoogle ScholarPubMed
45Salata, L., Burgos, P., Rasmusson, L., Novaes, A., Papalexiou, V., Dahlin, C., Sennerby, L.: Osseointegration of oxidized and turned implants in circumferential bone defects with and without adjunctive therapies: An experimental study on BMP-2 and autogenous bone graft in the dog mandible. Int. J. Oral Maxillofac. Surg. 36(1), 62 2008CrossRefGoogle Scholar
46Rausch-fan, X.H., Qu, Z., Wieland, M., Wieland, M., Matejka, M., Schedle, A.: Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dent. Mater. 24(1), 102 2008CrossRefGoogle ScholarPubMed
47Li, B., Jiang, B., Boyce, B.M., Lindsey, B.A.: Local IL-12 incorporated in nanocoatings promising for preventing open fracture associated infection. Orthopaedic Research Society (ORS) Annual Meeting San Francisco, CA, March 2008,Google Scholar