Skip to main content Accessibility help

Biocompatibility of Te–As–Se glass fibers for cell-based bio-optic infrared sensors

  • Allison A. Wilhelm (a1), Pierre Lucas (a1), Diana L. DeRosa (a2) and Mark R. Riley (a2)


The chemical stability and toxicity of Te–As–Se (TAS) infrared fibers are investigated. These fibers are used for biosensing applications that involve direct contact with live cultivated human cells. It is shown that TAS fibers exhibit a small oxidation layer after extended exposure to air. This layer is highly soluble in water and easily removed. However, the TAS glass itself is stable in water over several days. While oxidized fibers release arsenate ions, which result in toxic effects to the cells, fresh or washed fibers show no toxic effects. A good correlation is shown between surface etching and the disappearance of toxicity.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Bureau, B., Zhang, X.H., Smectala, F., Adam, J.L., Troles, J., Ma, H.L., Boussard-Pledel, C., Lucas, J., Lucas, P., Coq, D. Le, Riley, M.R., and Simmons, J.H.: Recent advances in chacogenide glasses. J. Non-Cryst. Solids 345, 276 (2004).
2Sanghera, J.S., Shaw, L.B., Busse, L.E., Nguyen, V.Q., Pureza, P.C., Cole, B.C., Harbison, B.B., Aggarwal, I.D., Mossadegh, R., Kung, F., Talley, D., Rossel, D., and Miklos, R.: Development and infrared applications of chalcogenide glass optical fibers. Fiber Int. Optics 19, 251 (2000).
3Lund, G. and Bonnet, H.: DARWIN: The infrared space interferometer. Comptes Rendus Acad. Sci. 2, 137 (2001).
4Sanghera, J.S., Shaw, L.B., Busse, L.E., Talley, D., and Aggarwal, I.D.: Infrared transmitting fiber optics for biomedical applications. Proceedings Photonics West, San Diego, CA, SPIE 3596, 178 (1999).
5Steiner, H., Jakusch, M., Kraft, M., Karlowatz, M., Baumann, T., Niessner, R., Konz, W., Brandenburg, A., Michel, K., Boussard-Pledel, C., Bureau, B., Lucas, J., Reichlin, Y., Katzir, A., Fleischmann, N., Staubmann, K., Allabashi, R., Bayona, J.M., and Mizaikoff, B.: In situ sensing of volatile organic compounds in groundwater: First field tests of a mid-infrared fiber-optic sensing system. Appl. Spectrosc. 57, 607 (2003).
6Lucas, P., Riley, M.R., Boussard-Pledel, C., and Bureau, B.: Advances in chalcogenide fiber evanescent-wave biochemical sensing. Anal. Biochem. 351, 1 (2006).
7Hocde, S., Loreal, O., Sire, O., Boussard-Pledel, C., Bureau, B., Turlin, B., Keirsse, J., Leroyer, P., and Lucas, J.: Metabolic imaging of tissues by infrared fiber-optic spectroscopy: An efficient tool for medical diagnosis. J. Biomed. Opt. 9, 404 (2004).
8Michel, K., Bureau, B., Boussard-Pledel, C., Jouan, T., Adam, J.L., Staubmann, K., and Baumann, T.: Monitoring of pollutant in wastewater by infrared spectroscopy using chalcogenide glass optical fibers. Sens. Actuators, B 101, 252 (2004).
9Sanghera, J.S., Aggarwal, I.D., Busse, L.E., Pureza, P.C., Nguyen, V.Q., Kung, F.H., Shaw, L.B., and Chenard, F.: Chalcogenide optical fibers target mid-IR applications. Laser Focus World 41, 83 (2005).
10Krska, R., Rosenber, E., Taga, K., Kellner, R., Messica, A., and Katzir, A.: Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water. Appl. Phys. Lett. 61, 1778 (1992).
11Karlowatz, M., Kraft, M., and Mizaikoff, B.: Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field. Anal. Chem. 76, 2643 (2004).
12Taga, K., Kellner, R., Kainz, U., and Sleytr, U.B.: In situ attenuated total reflectance ft-ir analysis of an enzyme-modified mid-infrared fiber surface using crystalline bacterial surface proteins. Anal. Chem. 66, 35 (1994).
13Mizaikoff, B., Gobel, R., Krska, R., Taga, K., Kellner, R., Tacke, M., and Katzir, A.: Infrared fiber-optical chemical sensors with reactive surface coatings. Sens. Actuators, B 29, 58 (1995).
14Yu, C.X., Ganjoo, A., Jain, H., Pantano, C.G., and Irudayaraj, J.: Mid-IR biosensor: Detection and fingerprinting of pathogens on gold island functionalized chalcogenide films. Anal. Chem. 78, 2500 (2006).
15Lucas, P., Coq, D. Le, Juncker, C., Collier, J., Boesewetter, D.E., Boussard-Plédel, C., Bureau, B., and Riley, M.R.: Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy (FEWS). Appl. Spectrosc. 59, 1 (2005).
16Lucas, P., Solis, M.A., Coq, D. Le, Juncker, C., Riley, M.R., Collier, J., Boeswetter, D.E., Boussard-Pledel, C., and Bureau, B.: Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells. Sens. Actuators, B 119, 355 (2006).
17Riley, M.R., DeRosa, D.L., Blaine, J., Potter, B.G., Lucas, P., Coq, D. Le, Juncker, C., Boeswetter, D.E., Collier, J., Boussard-Pledel, C., and Bureau, B.: Biologically inspired sensing: Infrared spectroscopic analysis of cell responses to an inhalation health hazard. Biotechnol. Prog. 22, 24 (2006).
18Riley, M.R., Fernandez, I.M., and Lucas, P.: Spectroscopic analysis of cell physiology and function, in Frontiers in Drug Design and Discovery 256, edited by Caldwell, G.W., Atta-ur-Rahman, , D’Andrea, M.R. and Choudhary, M.I. (Bentham Science Publishers Ltd., Pennington, NJ, 2006).
19Fang, Y., Ferrie, A.M., Fontaine, N.H., Mauro, J., and Balakrishnan, J.: Resonant waveguide grating biosensor for living cell sensing. Biophys. J. 91, 1925 (2006).
20Stenger, D.A., Gross, G.W., Keefer, E.W., Shaffer, K.M., Andreadis, J.D., Ma, W., and Pancrazio, J.J.: Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol. 19, 304 (2001).
21DeBusschere, B.D. and Kovacs, G.T.A.: Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosens. Bioelectron. 16, 543 (2001).
22Yicong, W., Ping, W., Xuesong, Y., Gaoyan, Z., Huiqi, H., Weimin, Y., Xiaoxiang, Z., Jinghong, H., and Dafu, C.: Drug evaluations using a novel microphysiometer based on cell-based biosensors. Sens. Actuators, B 80, 215 (2001).
23Gotshal, Y., Simhi, R., Sela, B-A., and Katzir, A.: Blood diagnostic using fiberoptic evanescent wave spectroscopy and neural networks analysis. Sens. Actuators, B 42, 157 (1997).
24Eytan, O., Sela, B-A., and Katzir, A.: Fiber-optic evanescent-wave spectroscopy and neural network: Application to chemical blood analysis. Appl. Opt. 39, 3357 (2000).
25Keirsse, J., Bousard-Pledel, C., Loreal, O., Sire, O., Bureau, B., Leroyer, P., Turlin, B., and Lucas, J.: IR optical fiber sensor for biomedical applications. Vib. Spectrosc. 32, 23 (2003).
26Coq, D. Le, Michel, K., Keirsse, J., Boussard-Pledel, C., Fonteneau, G., Bureau, B., Quere, J-M. Le, Sire, O., and Lucas, J.: Infrared glass fibers for in-situ sensing, chemical and biochemical reactions. C. R. Chimie 5, 907 (2002).
27Beyersmann, D.: Effects of carcinogenic metals on gene expression. Toxicol. Lett. 127, 63 (2002).
28Hocde, S., Boussard-Pledel, C., Fonteneau, G., and Lucas, J.: Chalcogens based glasses for IR fiber chemical sensors. Solid State Sci. 3, 279 (2001).
29Shiryaev, V.S., Adam, J-L., Zhang, X.H., Pledel, C. Boussard, Lucas, J., and Churbanov, M.F.: Infrared fibers based on Te–As–Se system with low optical losses. J. Non-Cryst. Solids 336, 113 (2004).
30Lecoq, D., Michel, K., Fonteneau, G., Hocde, S., Boussard-Pledel, C., and Lucas, J.: Infrared chalcogen glasses: Chemical polishing and fiber remote spectroscopy. Int. J. Inorg. Mater. 3, 233 (2001).
31Okeson, C.D., Riley, M.R., and Riley-Saxton, E.: In-vitro alveolar cytotoxicity of soluble components of airborne particulate matter: Effects of serum on toxicity of transition metals. Toxicol. in Vitro 18, 673 (2004).


Biocompatibility of Te–As–Se glass fibers for cell-based bio-optic infrared sensors

  • Allison A. Wilhelm (a1), Pierre Lucas (a1), Diana L. DeRosa (a2) and Mark R. Riley (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed