Skip to main content Accessibility help

Bioactive glass-ceramic scaffolds by additive manufacturing and sinter-crystallization of fine glass powders

  • Hamada Elsayed (a1), Andrea Zocca (a2), Johanna Schmidt (a3), Jens Günster (a2), Paolo Colombo (a4) and Enrico Bernardo (a3)...


Wollastonite (CaSiO3)–diopside (CaMgSi2O6) glass-ceramic scaffolds have been successfully fabricated using two different additive manufacturing techniques: powder-based 3D printing (3DP) and digital light processing (DLP), coupled with the sinter-crystallization of glass powders with two different compositions. The adopted manufacturing process depended on the balance between viscous flow sintering and crystallization of the glass particles, in turn influenced by the powder size and the sensitivity of CaO–MgO–SiO2 glasses to surface nucleation. 3DP used coarser glass powders and was more appropriate for low temperature firing (800–900 °C), leading to samples with limited crystallization. On the contrary, DLP used finer glass powders, leading to highly crystallized glass-ceramic samples. Despite the differences in manufacturing technology and crystallization, all samples featured very good strength-to-density ratios, which benefit their use for bone tissue engineering applications. The bioactivity of 3D-printed glass-ceramics after immersion in simulated body fluid and the similarities, in terms of ionic releases and hydroxyapatite formation with already validated bioactive glass-ceramics, were preliminarily assessed.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to



Hide All
1.Gmeiner, R., Deisinger, U., Schönherr, J., Lechner, B., Detsch, R., Boccaccini, A.R., and Stampfl, J.: Additive manufacturing of bioactive glasses and silicate bioceramics. J. Ceram. Sci. Technol. 6, 75 (2015).
2.Chopra, K., Mummery, P., Derby, B., and Gough, J.: Gel-cast glass-ceramic tissue scaffolds of controlled architecture produced via stereolithography of moulds. Biofabrication 4, 045002 (2012).
3.Padilla, S., Sánchez-Salcedo, S., and Vallet-Regí, M.: Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering. J. Biomed. Mater. Res., Part A 81, 224 (2007).
4.Chu, T-M.G., Halloran, J.W., Hollister, S.J., and Feinberg, S.E.: Hydroxyapatite implants with designed internal architecture. J. Mater. Sci. Mater. Med. 12, 471 (2001).
5.Limpanuphap, S. and Derby, B.: Manufacture of biomaterials by a novel printing process. J. Mater. Sci. Mater. Med. 13, 1163 (2002).
6.Fu, Q., Saiz, E., and Tomsia, A.P.: Bioinspired strong and highly porous glass scaffolds. Adv. Funct. Mater. 22, 1058 (2011).
7.Rahaman, M.N., Day, D.E., Bal, B.S., Fu, Q., Jung, S.B., Bonewald, L.F., and Tomsia, A.P.: Bioactive glass in tissue engineering. Acta Biomater. 7, 2355 (2011).
8.Fu, Q., Saiz, E., Rahaman, M.N., and Tomsia, A.P.: Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Mater. Sci. Eng., C 31, 1245 (2011).
9.Deliormanlı, A.M. and Rahaman, M.N.: Direct-write assembly of silicate and borate bioactive glass scaffolds for bone repair. J. Eur. Ceram. Soc. 32, 3637 (2012).
10.Eqtesadi, S., Motealleh, A., Pajares, A., and Miranda, P.: Effect of milling media on processing and performance of 13-93 bioactive glass scaffolds fabricated by robocasting. Ceram. Int. 41, 1379 (2015).
11.Hench, L.L. and Kokubo, T.: Properties of bioactive glasses and glass-ceramics. In Handbook of Biomaterial Properties, Black, J. and Hastings, G., eds. (Chapman & Hall, London, 1998); pp. 355563.
12.Tesavibul, P., Felzmann, R., Gruber, S., Liska, R., Thompson, I., Boccaccini, A.R., and Stampfl, J.: Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Mater. Lett. 74, 81 (2012).
13.Winkel, A., Meszaros, R., Reinsch, S., Müller, R., Travitzky, N., Fey, T., Greil, P., and Wondraczek, L.: Sintering of 3D-printed glass/HAp composites. J. Am. Ceram. Soc. 95, 3387 (2012).
14.Boccaccini, A.R., Chen, Q., Lefebvre, L., Gremillard, L., and Chevalier, J.: Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass-ceramics. Faraday Discuss. 136, 27 (2007).
15.Baino, F., Ferraris, M., Bretcanu, O., Verné, E., and Vitale-Brovarone, C.: Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. J. Appl. Biomater. 27, 872 (2013).
16.Elsayed, H., Romero, A.R., Ferroni, L., Gardin, C., Zavan, B., and Bernardo, E.: Bioactive glass-ceramic scaffolds from novel ‘inorganic gel casting’ and sinter-crystallization. Materials 10, 171 (2017).
17.Peitl, O., LaTorre, G.P., and Hench, L.L.: Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J. Biomed. Mater. Res. 30, 509 (1996).
18.Peitl, O., Zanotto, E.D., and Hench, L.L.: Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramic. J. Non-Cryst. Solids 292, 115 (2001).
19.Meszaros, R., Zhao, R., Travitzky, N., Fey, T., Greil, P., and Wondraczek, L.: Three-dimensional printing of a bioactive glass. Glass Technol.: Eur. J. Glass Sci. Technol., Part A 52, 111 (2011).
20.Montazerian, M. and Zanotto, E.D.: History and trends of bioactive glass-ceramics. J. Biomed. Mater. Res., Part A 104, 1231 (2016).
21.Müller, R., Zanotto, E.D., and Fokin, V.M.: Surface crystallization of silicate glasses: Nucleation sites and kinetics. J. Non-Cryst. Solids 274, 208 (2000).
22.Prado, M.O. and Zanotto, E.D.: Glass sintering with concurrent crystallization. Compt. Rendus Chem. 5, 773 (2002).
23.Francis, A.A., Rawlings, R.D., Sweeney, R., and Boccaccini, A.R.: Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass. J. Non-Cryst. Solids 333, 187 (2004).
24.Hernández-Crespo, M.S., Romero, M., and Rincón, J.M.: Nucleation and crystal growth of glasses produced by a generic plasma arc-process. J. Eur. Ceram. Soc. 26, 1679 (2006).
25.Bernardo, E., Scarinci, G., Edme, E., Michon, U., and Planty, N.: Fast-sintered gehlenite glass-ceramics from plasma-vitrified municipal solid waste incinerator fly ashes. J. Am. Ceram. Soc. 92, 528 (2009).
26.Ray, A. and Tiwari, A.N.: Compaction and sintering behaviour of glass-alumina composites. Mater. Chem. Phys. 67, 220 (2001).
27.Hulbert, S.F., Morrison, S.J., and Klawitter, J.J.: Tissue reaction to three ceramics of porous and non-porous structures. J. Biomed. Mater. Res. 6, 347 (1972).
28.Sainz, M.A., Pena, P., Serena, S., and Caballero, A.: Influence of design on bioactivity of novel CaSiO3–CaMg(SiO3)2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation. Acta Biomater. 6, 2797 (2010).
29.Börger, A., Supancic, P., and Danzer, R.: The ball on three balls test for strength testing of brittle discs: Stress distribution in the disc. J. Eur. Ceram. Soc. 22, 142 (2002).
30.Elsayed, H., Colombo, P., and Bernardo, E.: Direct ink writing of wollastonite-diopside glass-ceramic scaffolds from a silicone resin and engineered fillers. J. Eur. Ceram. Soc. 37, 4187 (2017).
31.Karamanov, A. and Pelino, M.: Induced crystallization porosity and properties of sintered diopside and wollastonite glass-ceramics. J. Eur. Ceram. Soc. 28, 555 (2008).
32.Boccaccini, A.R.: On the viscosity of glass composites containing rigid inclusions. Mater. Lett. 34, 285 (1998).
33.Müller, R., Eberstein, M., Reinsch, S., Schiller, W.A., Deubener, J., and Thiel, A.: Effect of rigid inclusions on sintering of low temperature co-fired ceramics. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B 48, 259 (2007).
34.Prado, M.O., Ferreira, E.B., and Zanotto, E.D.: Sintering kinetics of crystallizing glass particles. Ceram. Trans. 170, 163 (2005).
35.Reddy, A.A., Tulyaganov, D.U., Pascual, M.J., Kharton, V.V., Tsipis, E.V., Kolotygin, V.A., and Ferreira, J.M.F.: SrO-containing diopside glass-ceramic sealants for solid oxide fuel cells: Mechanical reliability and thermal shock resistance. Fuel Cells 13, 689 (2013).
36.Thompson, I.D. and Hench, L.L.: Mechanical properties of bioactive glasses, glass-ceramics and composites. Proc. Inst. Mech. Eng., Part H 212, 127 (1998).
37.Rahaman, M.N., Liu, X., and Huang, T.S.: Bioactive glass scaffolds for the repair of load-bearing bones. In Advances in Bioceramics and Porous Ceramics, Vol. 32, Narayan, R. and Colombo, P., eds. (John Wiley & Sons, Hoboken, New Jersey, United States, 2009); p. 65.
38.Gibson, L.J. and Ashby, M.F.: Cellular Solids, Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1999).
39.Nakamura, T., Yamamuro, T., Higashi, S., Kokubo, T., and Itoo, S.: A new glass-ceramic for bone replacement: Evaluation of its bonding to bone tissue. J. Biomed. Mater. Res. 19, 685 (1985).
40.Kokubo, T.: Bioceramics and Their Clinical Applications (Elsevier, New York City, New York, United States, 2008).
41.Lu, J.X., Descamps, M., Dejou, J., Koubi, G., Hardouin, P., Lemaitre, J., and Proust, J.P.: The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res. 63, 408 (2002).
42.Ohtsuki, C., Kokubo, T., and Yamamuro, T.: Mechanism of apatite formation on CaOSiO2P2O5 glasses in a simulated body fluid. J. Non-Cryst. Solids 143, 84 (1992).
43.Wu, C. and Chang, J.: A review of bioactive silicate ceramics. Biomed. Mater. 8, 032001 (2013).
44.Siriphannon, P., Kameshima, Y., Yasumori, A., Okada, K., and Hayashi, S.: Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J. Eur. Ceram. Soc. 22, 511 (2002).
45.Iimori, Y., Kameshima, Y., Okada, K., and Hayashi, S.: Comparative study of apatite formation on CaSiO3 ceramics in simulated body fluids with different carbonate concentrations. J. Mater. Sci.: Mater. Med. 16, 73 (2005).
46.Salahinejad, E. and Vahedifard, R.: Deposition of nanodiopside coatings on metallic biomaterials to stimulate apatite-forming ability. Mater. Des. 123, 120 (2017).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed