Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T02:17:40.981Z Has data issue: false hasContentIssue false

Binder surface segregation during spray drying of ceramic slurry

Published online by Cambridge University Press:  31 January 2011

Yao Zhang
Affiliation:
Department of Chemistry, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-21, Japan
XiaoXia Tang
Affiliation:
Department of Chemistry, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-21, Japan
Nozomu Uchida
Affiliation:
Department of Chemistry, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-21, Japan
Keizo Uematsu
Affiliation:
Department of Chemistry, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-21, Japan
Get access

Extract

Spray-dried granules were observed by a laser microscopy with the immersion liquid technique. The binder distribution in the granules was analyzed from light intensity profiles of the images. The results showed that a surface layer with a large amount of the binder is formed in the spray-dried granule, and the segregation is influenced by initial binder concentration and size of atomized droplet. A computer simulation for soluble binder segregation during spray drying was conducted by considering simultaneously the solvent evaporation, the relative migration between the liquid and the particles, the diffusion, and drying shrinkage. The simulation coincides with the experimental results. To make uniform granules, reducing the amount of binder, liquid content, size of atomized droplet, and drying rate is favorable.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lukasiewicz, S. J., J. Am. Ceram. Soc. 72, 617 (1989).CrossRefGoogle Scholar
2.Lukasiewicz, S. J. and Reed, J. S., J. Am. Ceram. Soc. 57, 798 (1978).Google Scholar
3.Frey, R. G. and Halloran, J. W., J. Am. Ceram. Soc. 67, 199 (1984).CrossRefGoogle Scholar
4.Dimilia, R. A. and Reed, J. S., Adv. Ceram. 9, 38 (1984).Google Scholar
5.Zhang, Y., Uchida, N., and Uematsu, K., J. Mater. Sci. 30, 1357 (1995).CrossRefGoogle Scholar
6.Comeforo, J. E., Ceram. Age (4), 132136 (1945).Google Scholar
7.Kellett, B. J. and Lange, F. F., J. Am. Ceram. Soc. 72, 725 (1989).CrossRefGoogle Scholar
8.Uematsu, K., Miyashita, M., Kim, J-Y., and Uchida, N., J. Am. Ceram. Soc. 75, 1016 (1992).Google Scholar
9.Lange, F. F., J. Am. Ceram. Soc. 72, 3 (1989).CrossRefGoogle Scholar
10.Kim, J-Y., Miyashita, M., Uchida, N., and Uematsu, K., J. Mater. Sci. 27, 6609 (1992).CrossRefGoogle Scholar
11.Zheng, J. and Reed, J. S., J. Am. Ceram. Soc. 72, 810 (1989).CrossRefGoogle Scholar
12.Uematsu, K., Sekiguchi, M., Kim, J-Y., Saito, K., Mutoh, Y., Inoue, M., Fujino, Y., and Miyamoto, A., J. Mater. Sci. 28, 1788 (1993).CrossRefGoogle Scholar
13.Messing, G. L., Zhang, S. C., and Jayanthi, G. V., J. Am. Ceram. Soc. 76, 2707 (1993).CrossRefGoogle Scholar
14.Zhang, S. C. and Messing, G. L., J. Am. Ceram. Soc. 73, 61 (1990).CrossRefGoogle Scholar
15.Jayanthi, G. V., Zhang, S. C., and Messing, G. L., Aerosol Science and Technology 19, 478 (1993).CrossRefGoogle Scholar
16.Takahashi, H., Shinohara, N., Okumiya, M., Uematsu, K., Tsubaki, J., Iwamoto, Y., and Kamiya, H., J. Am. Ceram. Soc. 78, 903 (1995).CrossRefGoogle Scholar
17.Zhang, Y., Tang, X. X., Kato, Z., Uchida, N., and Uematsu, K., J. Ceram. Soc. Jpn. 101, 180 (1993).CrossRefGoogle Scholar
18.Zhang, Y., Suga, T., Kawasaki, M., Tang, X. X., Uchida, N., and Uematsu, K., J. Am. Ceram. Soc. 79, 435 (1996).CrossRefGoogle Scholar
19. Masters, Spray Drying Handbook, 4th ed. (1990), pp. 298342.Google Scholar
20. Masters, Spray Drying Handbook, 4th ed. (1990), pp. 7696.Google Scholar
21.Uematsu, K., Kim, J-Y., Miyashita, M., Uchid, N., and Saito, K., J. Am. Ceram. Soc. 73, 2555 (1990).CrossRefGoogle Scholar
22.Kim, J-Y., Inoue, M., Kato, Z., Uchid, N., Saito, K., and Uematsu, K., J. Mater. Sci. 26, 2215 (1991).CrossRefGoogle Scholar
23.Uematsu, K., Uchid, N., and Zhang, Y., First International Particle Technology Forum, Denver, 1994, p. 144.Google Scholar
24.Uematsu, K. and Zhang, Y., Science of Ceramic Interfaces II, edited by Nowotny, J. (Elsevier, Amsterdam, 1994), p. 399.Google Scholar
25.Ranz, W. E. and Marshall, W. R. Jr., Chem. Eng. Prog. 48, 173 (1952).Google Scholar
26.Crank, J., The Mathematics of Diffusion, 2nd ed. (Oxford University Press, 1975).Google Scholar
27.Zhang, Y., Tang, X. X., Kato, Z., Uchida, N., and Uematsu, K., J. Ceram. Soc. Jpn. 100, 1348 (1992).CrossRefGoogle Scholar
28.Scherer, G. W., J. Am. Ceram. Soc. 73, 3 (1990).CrossRefGoogle Scholar
29.Croby, E. J. and Marshall, W. R. Jr., Chem. Eng. Prog. 54, 56 (1958).Google Scholar