Skip to main content Accessibility help

Bi-modified Pd-based/carbon-doped TiO2 hollow spheres catalytic for ethylene glycol electrooxidation in alkaline medium

  • Yue Li (a1), Di Lu (a1), Liqun Zhou (a1), Menglin Ye (a1), Xing Xiong (a1), Kunzhou Yang (a1), Yaxi Pan (a1), Menghuan Chen (a1), Peng Wu (a1), Tian Li (a1), Yuting Chen (a1), Zheng Wang (a1) and Qinghua Xia (a1)...


The TiO2 hollow spheres (TiO2HS) were successfully prepared by a hydrothermal method and added to Vulcan XC-72 carbon black as the support materials for Pd nanoparticles. A facile approach to promote ethylene glycol (EG) electrooxidation in alkaline medium was carried out by the PdBi/TiO2HS-C catalyst. The results show that Pd and Bi nanoparticles are uniformly dispersed on the surface of carbon-doped TiO2 hollow spheres, the appropriate amount of Bi modification into Pd/TiO2HS-C catalyst can enhance remarkably the electrocatalytic activity for EG oxidation, in which the PdBi/TiO2HS-C (Pd:Bi = 1:0.1) catalyst exhibits excellent stability. The high electrochemical performance is attributed to the unique structure and high surface area of the TiO2HS, metal nanoparticles uniform distribution, the electronic effect between Pd and Bi as well as the bifunctional effect between metal nanoparticles and the support TiO2HS-C. The results obtained are significant for the development of new Pd-based TiO2HS-C electrocatalysts for alcohol fuel cells.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Zhou, W.P., Lewera, A., Larsen, R., Masel, R.I., Bagus, P.S., and Wieckowski, A.: Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 110, 13393 (2006).
2. Yang, G., Chen, Y., Zhou, Y., Tang, Y., and Lu, T.: Preparation of carbon supported Pd–P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation. Electrochem. Commun. 12, 492 (2010).
3. Pang, J., Zheng, M., Wang, A., and Zhang, T.: Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glycol. Ind. Eng. Chem. Res. 50, 6601 (2011).
4. Yuan, X., Li, P., Wang, H., Wang, X., Cheng, X., and Cui, Z.: Enhancing the anaerobic digestion of corn stalks using composite microbial pretreatment. J. Microbiol. Biotechnol. 21, 746 (2011).
5. Yue, H., Zhao, Y., Ma, X., and Gong, J.: Ethylene glycol: Properties, synthesis, and applications. Chem. Soc. Rev. 41, 4218 (2012).
6. Shen, P.K. and Xu, C.: Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochem. Commun. 8, 184 (2006).
7. Liu, J., Ye, J., Xu, C., Jiang, S.P., and Tong, Y.: Electro-oxidation of methanol, 1-propanol and 2-propanol on Pt and Pd in alkaline medium. J. Power Sources 177, 67 (2008).
8. Shao, M.H., Huang, T., Liu, P., Zhang, J., Sasaki, K., Vukmirovic, M.B., and Adzic, R.R.: Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir 22, 10409 (2006).
9. Bianchini, C. and Shen, P.K.: Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 109, 4183 (2009).
10. Zhang, X., Liu, L., Zhao, Z., Tu, B., Ou, D.R., Cui, D., Wei, X., Chen, X., and Cheng, M.: Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode. Nano Lett. 15, 1703 (2015).
11. Hu, F., Ding, F., Song, S., and Shen, P.K.: Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation. J. Power Sources 163, 415 (2006).
12. Dong, P., Liu, B., Wang, Y., and Pei, H.: Enhanced photocatalytic activity of (Mo, C)-codoped anatase TiO2 nanoparticles for degradation of methyl orange under simulated solar irradiation. J. Mater. Res. 25, 2392 (2010).
13. Hassan, M.E., Cong, L., Liu, G., Zhu, D., and Cai, J.: Synthesis and characterization of C-doped TiO2 thin films for visible-light-induced photocatalytic degradation of methyl orange. Appl. Surf. Sci. 294, 89 (2014).
14. Chen, J., Qiu, F., Zhang, Y., Liang, J., Zhu, H., and Cao, S.: Enhanced supercapacitor performances using C-doped porous TiO2 electrodes. Appl. Surf. Sci. 356, 553 (2015).
15. Chen, J., Wang, G., Wang, X., Jiang, C., Zhu, S., and Wang, R.: Synthesis of highly dispersed Pd nanoparticles with high activity for formic acid electro-oxidation. J. Mater. Res. 28, 1553 (2013).
16. Simões, M., Baranton, S., and Coutanceau, C.: Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Appl. Catal., B 110, 40 (2011).
17. Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).
18. Liu, F., Yan, X., Chen, X., Tian, L., Xia, Q., and Chen, X.: Mesoporous TiO2 nanoparticles terminated with carbonate-like groups: Amorphous/crystalline structure and visible-light photocatalytic activity. Catal. Today 264, 243 (2016).
19. Lu, H., Ye, W., Guo, P., Wang, Q., Lu, C., and Zhao, X.S.: Template synthesis and electrocatalytic properties of palladium hollow spheres. Adv. Mater. 709, 11 (2013).
20. Li, X., Yu, J., and Jaroniec, M.: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).
21. Chen, X., Liu, L., and Huang, F.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).
22. Si, L., Huang, Z., Lv, K., Ye, H., Deng, K., and Wu, Y.: Fabrication of TiO2 hollow microspheres by ammonia-induced self-transformation. J. Alloys Compd. 612, 69 (2014).
23. Cai, J., Huang, Y., and Guo, Y.: Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium. Electrochim. Acta 99, 22 (2013).
24. Tusi, M.M., Polanco, N.S.O., Silva, S.G., Spinacé, E.V., and Neto, A.O.: The high activity of PtBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Electrochem. Commun. 13, 143 (2011).
25. Neto, A.O., Tusi, M.M., Polanco, N.S.O., Silva, S.G., Santos, M.C., and Spinacé, E.V.: PdBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 36, 10522 (2011).
26. Casella, I.G. and Contursi, M.: Characterization of bismuth adatom-modified palladium electrodes: The electrocatalytic oxidation of aliphatic aldehydes in alkaline solutions. Electrochim. Acta 52, 649 (2006).
27. Singh, R.N., Singh, A., and Anindita, : Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH. Int. J. Hydrogen Energy 34, 2052 (2009).
28. Bavykin, D.V., Parmon, V.N., Lapkin, A.A., and Walsh, F.C.: The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 14, 3370 (2004).
29. Wilson, G.J., Matijasevich, A.S., Mitchell, D.R.G., Schulz, J.C., and Will, G.D.: Modification of TiO2 for enhanced surface properties: Finite Ostwald ripening by a microwave hydrothermal process. Langmuir 22, 2016 (2006).
30. Huang, M., Dong, G., Wang, N., Xu, J., and Guan, L.: Highly dispersive Pt atoms on the surface of RuNi nanoparticles with remarkably enhanced catalytic performance for ethanol oxidation. Energy Environ. Sci. 4, 4513 (2011).
31. Huang, Y., Zheng, S., Lin, X., Su, L., and Guo, Y.: Microwave synthesis and electrochemical performance of a PtPb alloy catalyst for methanol and formic acid oxidation. Electrochim. Acta 63, 346 (2012).
32. Yin, H.Y., Wang, X.L., Wang, L., Yuan, Q.L., and Zhao, H.T.: Self-doped TiO2 hierarchical hollow spheres with enhanced visible-light photocatalytic activity. J. Alloys Compd. 640, 68 (2015).
33. Ju, J., Shi, Y., and Wu, D.: TiO2 nanotube supported PdNi catalyst for methanol electro-oxidation. Powder Technol. 230, 252 (2012).
34. Xu, J.B., Zhao, T.S., Shen, S.Y., and Li, Y.S.: Stabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation. Int. J. Hydrogen Energy 35, 6490 (2010).
35. Casella, I.G. and Contursi, M.: An electrochemical and XPS study of the electrodeposited binary Pd–Sn catalyst: The electroreduction of nitrate ions in acid medium. J. Electroanal. Chem. 588, 147 (2006).
36. Huang, Y., Cai, J., Liu, M., and Guo, Y.: Fabrication of a novel PtPbBi/C catalyst for ethanol electro-oxidation in alkaline medium. Electrochim. Acta 83, 1 (2012).
37. Zhou, W. and Lee, J.Y.: Particle size effects in Pd-catalyzed electrooxidation of formic acid. J. Phys. Chem. C 112, 3789 (2008).
38. Holme, T., Zhou, Y., Pasquarelli, R., and O'Hayre, R.: First principles study of doped carbon supports for enhanced platinum catalysts. Phys. Chem. Chem. Phys. 12, 9461 (2010).
39. Liu, Y., Wang, L., Wang, G., Deng, C., Wu, B., and Gao, Y.: High active carbon supported PdAu catalyst for formic acid electrooxidation and study of the kinetics. J. Phys. Chem. C 114, 21417 (2010).
40. Liang, Z.X., Zhao, T.S., Xu, J.B., and Zhu, L.D.: Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 54, 2203 (2009).
41. Kang, S., Lee, J., Lee, J.K., Chung, S.Y., and Tak, Y.: Influence of Bi modification of Pt anode catalyst in direct formic acid fuel cells. J. Phys. Chem. B 110, 7270 (2006).
42. Futamata, M. and Luo, L.: Adsorbed water and CO on Pt electrode modified with Ru. J. Power Sources 164, 532 (2007).
43. Ye, K.H., Zhou, S.A., Zhu, X.C., Xu, C.W., and Shen, P.K.: Stability analysis of oxide (CeO2, NiO, Co3O4 and Mn3O4) effect on Pd/C for methanol oxidation in alkaline medium. Electrochim. Acta 90, 108 (2013).
44. Zheng, J.N., He, L.L., Chen, F.Y., Wang, A.J., Xue, M.W., and Feng, J.J.: A facile general strategy for synthesis of palladium-based bimetallic alloyed nanodendrites with enhanced electrocatalytic performance for methanol and ethylene glycol oxidation. J. Mater. Chem. A 2, 12899 (2014).
45. Demarconnay, L., Brimaud, S., Coutanceau, C., and Léger, J.M.: Ethylene glycol electrooxidation in alkaline medium at multi-metallic Pt based catalysts. J. Electroanal. Chem. 601, 169 (2007).
46. Huang, Y., Cai, J., and Guo, Y.: A high-efficiency microwave approach to synthesis of Bi-modified Pt nanoparticle catalysts for ethanol electro-oxidation in alkaline medium. Appl. Catal., B 129, 549 (2013).
47. Thotiyl, M.M.O., Kumar, T.R., and Sampath, S.: Pd supported on titanium nitride for efficient ethanol oxidation. J. Phys. Chem. C 114, 17934 (2010).
48. Hoster, H., Iwasita, T., Baumgārtner, H., and Vielstich, W.: Current-time behavior of smooth and porous PtRu surfaces for methanol oxidation. J. Electrochem. Soc. 148, A496 (2001).


Bi-modified Pd-based/carbon-doped TiO2 hollow spheres catalytic for ethylene glycol electrooxidation in alkaline medium

  • Yue Li (a1), Di Lu (a1), Liqun Zhou (a1), Menglin Ye (a1), Xing Xiong (a1), Kunzhou Yang (a1), Yaxi Pan (a1), Menghuan Chen (a1), Peng Wu (a1), Tian Li (a1), Yuting Chen (a1), Zheng Wang (a1) and Qinghua Xia (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed