Skip to main content Accessibility help

Bilayer graphene-covered Cu flexible electrode with excellent mechanical reliability and electrical performance

  • Yu-Jia Yang (a1), Bin Zhang (a1), Hong-Yuan Wan (a2), Kun Liu (a3) and Guang-Ping Zhang (a4)...


Flexible electrode is an indispensable component of emerging portable, flexible, and wearable electronic devices. Although various flexible electrodes with different dimensions and functions have been explored, developing a new electrode material with excellent mechanical reliability and superior electrical performance remains a challenge. Here, a graphene-covered Cu composite electrode film with a total thickness of 100 nm is successfully fabricated onto a flexible polyimide substrate by means of a series of assembly methods including physical vapor deposition, chemical vapor deposition, and transfer technique. The composite electrode film on the flexible substrate exhibits evidently enhanced tensile strength, monotonic bending, and repeatedly bending fatigue reliability as well as electrical performance compared with that of the bared Cu film electrode. Such excellent mechanical performances are attributed to the role of the graphene coating in suppressing fatigue damage formation and preventing crack advance. It is expected that the chemical vapor-deposited graphene-covered Cu composite electrode would extend the potential ultrathin metal film electrode as the innovative electrode material for the next-generation flexible electronic devices.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Jia, D., Jiang, D., Zheng, Y., Tan, H., Cao, X., Liu, F., Yue, L., Sun, Y., and Liu, J.: Electrochemical synthesis of NiCo layered double hydroxide nanosheets decorated on moderately oxidized graphene films for energy storage. Nanoscale 11, 2812 (2019).
2.Yu, Y., Luo, Y., Wu, H., Jiang, K., Li, Q., Fan, S., Li, J., and Wang, J.: Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale 10, 19972 (2018).
3.Zhu, L., Zheng, D., Wang, Z., Zheng, X., Fang, P., Zhu, J., Yu, M., Tong, Y., and Lu, X.: A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc-air batteries. Adv. Mater. 30, 1805268 (2018).
4.Yao, Y., Chen, M., Xu, R., Zeng, S., Yang, H., Ye, S., Liu, F., Wu, X., and Yu, Y.: CNT interwoven nitrogen and oxygen dual-doped porous carbon nanosheets as free-standing electrodes for high-performance Na–Se and K–Se flexible batteries. Adv. Mater. 30, 1805234 (2018).
5.Liang, F-C., Chang, Y-W., Kuo, C-C., Cho, C-J., Jiang, D-H., Jhuang, F-C., Rwei, S-P., and Borsali, R.: A mechanically robust silver nanowire–polydimethylsiloxane electrode based on facile transfer printing techniques for wearable displays. Nanoscale 11, 1520 (2019).
6.Song, J., Fang, T., Li, J., Xu, L., Zhang, F., Han, B., Shan, Q., and Zeng, H.: Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 30, 1805409 (2018).
7.Park, I.J., Kim, T.I., Kang, S., Shim, G.W., Woo, Y., Kim, T.S., and Choi, S.Y.: Stretchable thin-film transistors with molybdenum disulfide channels and graphene electrodes. Nanoscale 10, 16069 (2018).
8.Jo, H.S., Kwon, H-J., Kim, T-G., Park, C-W., An, S., Yarin, A.L., and Yoon, S.S.: Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires. Nanoscale 10, 19825 (2018).
9.Yetisen, A.K., Martinez-Hurtado, J.L., Ünal, B., Khademhosseini, A., and Butt, H.: Wearables in medicine. Adv. Mater. 30, 1706910 (2018).
10.Huynh, T.P. and Haick, H.: Autonomous flexible sensors for health monitoring. Adv. Mater. 30, 1802337 (2018).
11.Pu, Z., Tu, J., Han, R., Zhang, X., Wu, J., Fang, C., Wu, H., Zhang, X., Yu, H., and Li, D.: A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for implantable continuous glucose monitoring. Lab Chip 18, 3570 (2018).
12.Hwang, B., Kim, W., Kim, J., Lee, S., Lim, S., Kim, S., Oh, S.H., Ryu, S., and Han, S.M.: Role of graphene in reducing fatigue damage in Cu/Gr nanolayered composite. Nano Lett. 17, 4740 (2017).
13.Park, S., Vosguerichian, M., and Bao, Z.: A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5, 1727 (2013).
14.Liu, L., Ding, L., Zhong, D., Han, J., Wang, S., Meng, Q., Qiu, C., Zhang, X., Peng, L-M., and Zhang, Z.: Carbon nanotube complementary gigahertz integrated circuits and their applications on wireless sensor interface systems. ACS Nano 13, 2526 (2019).
15.Zhang, H., Xiang, L., Yang, Y., Xiao, M., Han, J., Ding, L., Zhang, Z., Hu, Y., and Peng, L-M.: High-performance carbon nanotube complementary electronics and integrated sensor systems on ultrathin plastic foil. ACS Nano 12, 2773 (2018).
16.Li, C., Ding, M., Zhang, B., Qiao, X., and Liu, C.Y.: Graphene aerogels that withstand extreme compressive stress and strain. Nanoscale 10, 18291 (2018).
17.Chong, W.G., Xiao, Y., Huang, J-Q., Yao, S., Cui, J., Qin, L., Gao, C., and Kim, J-K.: Highly conductive porous graphene/sulfur composite ribbon electrodes for flexible lithium–sulfur batteries. Nanoscale 10, 21132 (2018).
18.Deng, Z., Jiang, H., Hu, Y., Liu, Y., Zhang, L., Liu, H., and Li, C.: 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries. Adv. Mater. 29, 1603020 (2017).
19.Guan, C., Sumboja, A., Wu, H., Ren, W., Liu, X., Zhang, H., Liu, Z., Cheng, C., Pennycook, S.J., and Wang, J.: Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 29, 1704117 (2017).
20.Liu, B., Zhang, J., Wang, X., Chen, G., Chen, D., Zhou, C., and Shen, G.: Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 12, 3005 (2012).
21.Zhang, Y., Zhang, L., Cui, K., Ge, S., Cheng, X., Yan, M., Yu, J., and Liu, H.: Flexible electronics based on micro/nanostructured paper. Adv. Mater. 30, 1801588 (2018).
22.Yang, Y., Huang, Q., Payne, G.F., Sun, R., and Wang, X.: A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 11, 725 (2019).
23.Yu, P., Fu, W., Zeng, Q., Lin, J., Yan, C., Lai, Z., Tang, B., Suenaga, K., Zhang, H., and Liu, Z.: Controllable synthesis of atomically thin type-II weyl semimetal WTe2 nanosheets: An advanced electrode material for all-solid-state flexible supercapacitors. Adv. Mater. 29, 1701909 (2017).
24.Luo, X.M., Zhu, X.F., and Zhang, G.P.: Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat. Commun. 5, 3021 (2014).
25.Wan, H.Y., Luo, X.M., Li, X., Liu, W., and Zhang, G.P.: Nanotwin-enhanced fatigue resistance of ultrathin Ag films for flexible electronics applications. Mater. Sci. Eng. A 676, 421 (2016).
26.Zhang, B., Xiao, T.Y., Luo, X.M., Zhu, X.F., and Zhang, G.P.: Enhancing fatigue cracking resistance of nanocrystalline Cu films on a flexible substrate. Mater. Sci. Eng. A 627, 61 (2015).
27.Yun, J.: Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv. Funct. Mater. 27, 1606641 (2017).
28.Wimalananda, M.D.S.L., Kim, J-K., and Lee, J-M.: Toward the ultra-transparent electrode by using patterned silver nanowire and graphene layered material. Carbon 125, 9 (2017).
29.Tseng, C-A., Chen, C-C., Ulaganathan, R.K., Lee, C-P., Chiang, H-C., Chang, C-F., and Chen, Y-T.: One-step synthesis of antioxidative graphene-wrapped copper nanoparticles on flexible substrates for electronic and electrocatalytic applications. ACS Appl. Mater. Interfaces 9, 25067 (2017).
30.Hwang, C., Song, W-J., Han, J-G., Bae, S., Song, G., Choi, N-S., Park, S., and Song, H-K.: Foldable electrode architectures based on silver-nanowire-wound or carbon-nanotube-webbed micrometer-scale fibers of polyethylene terephthalate mats for flexible lithium-ion batteries. Adv. Mater. 30, 1705445 (2018).
31.Wang, H-G., Li, W., Liu, D-P., Feng, X-L., Wang, J., Yang, X-Y., Zhang, X-b., Zhu, Y., and Zhang, Y.: Flexible electrodes for sodium-ion batteries: Recent progress and perspectives. Adv. Mater. 29, 1703012 (2017).
32.Kumar, A. and Zhou, C.: The race to replace tin-doped indium oxide: Which material will win? ACS Nano 4, 11 (2010).
33.Wang, J-L., Hassan, M., Liu, J-W., and Yu, S-H.: Nanowire assemblies for flexible electronic devices: Recent advances and perspectives. Adv. Mater. 30, 1803430 (2018).
34.Zhang, G.P., Sun, K.H., Zhang, B., Gong, J., Sun, C., and Wang, Z.G.: Tensile and fatigue strength of ultrathin copper films. Mater. Sci. Eng. A 483–484, 387 (2008).
35.Zhang, G.P., Volkert, C.A., Schwaiger, R., Wellner, P., Arzt, E., and Kraft, O.: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).
36.Liu, H.S., Zhang, B., and Zhang, G.P.: Delaying premature local necking of high-strength Cu: A potential way to enhance plasticity. Scr. Mater. 64, 13 (2011).
37.Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).
38.Kim, Y., Lee, J., Yeom, M.S., Shin, J.W., Kim, H., Cui, Y., Kysar, J.W., Hone, J., Jung, Y., Jeon, S., and Han, S.M.: Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat. Commun. 4, 2114 (2013).
39.Song, S.H., Park, K.H., Kim, B.H., Choi, Y.W., Jun, G.H., Lee, D.J., Kong, B.S., Paik, K.W., and Jeon, S.: Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25, 732 (2013).
40.Kim, S.J., Shin, D.H., Choi, Y.S., Rho, H., Park, M., Moon, B.J., Kim, Y., Lee, S.K., Lee, D.S., Kim, T.W., Lee, S.H., Kim, K.S., Hong, B.H., and Bae, S.: Ultrastrong graphene–copper core–shell wires for high-performance electrical cables. ACS Nano 12, 2803 (2018).
41.Cao, M., Xiong, D-B., Tan, Z., Ji, G., Amin-Ahmadi, B., Guo, Q., Fan, G., Guo, C., Li, Z., and Zhang, D.: Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in situ processing for enhanced mechanical properties and high electrical conductivity. Carbon 117, 65 (2017).
42.Hwang, J., Yoon, T., Jin, S.H., Lee, J., Kim, T.S., Hong, S.H., and Jeon, S.: Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater. 25, 6724 (2013).
43.Yang, Z., Wang, L., Shi, Z., Wang, M., Cui, Y., Wei, B., Xu, S., Zhu, Y., and Fei, W.: Preparation mechanism of hierarchical layered structure of graphene/copper composite with ultrahigh tensile strength. Carbon 127, 329 (2018).
44.Jiang, R., Zhou, X., and Liu, Z.: Electroless Ni-plated graphene for tensile strength enhancement of copper. Mater. Sci. Eng. A 679, 323 (2017).
45.Chen, F., Ying, J., Wang, Y., Du, S., Liu, Z., and Huang, Q.: Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96, 836 (2016).
46.Tang, Y., Yang, X., Wang, R., and Li, M.: Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Mater. Sci. Eng. A 599, 247 (2014).
47.Kim, W.J., Lee, T.J., and Han, S.H.: Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon 69, 55 (2014).
48.Ren, Z., Meng, N., Shehzad, K., Xu, Y., Qu, S., Yu, B., and Luo, J.K.: Mechanical properties of nickel–graphene composites synthesized by electrochemical deposition. Nanotechnology 26, 065706 (2015).
49.Wang, J., Li, Z., Fan, G., Pan, H., Chen, Z., and Zhang, D.: Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 66, 594 (2012).
50.Li, Z., Fan, G., Tan, Z., Guo, Q., Xiong, D., Su, Y., Li, Z., and Zhang, D.: Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology 25, 325601 (2014).
51.Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., and Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).
52.Zhang, B., Lee, W.H., Piner, R., Kholmanov, I., Wu, Y., Li, H., Ji, H., and Ruoff, R.S.: Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano 6, 2471 (2012).
53.Li, X., Colombo, L., and Ruoff, R.S.: Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 28, 6247 (2016).
54.Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
55.Ni, Z.H., Wang, H.M., Kasim, J., Fan, H.M., Yu, T., Wu, Y.H., Feng, Y.P., and Shen, Z.X.: Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758 (2007).
56.Chu, K., Wang, F., Li, Y-b., Wang, X-h., Huang, D-j., and Geng, Z-r.: Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene. Composites, Part A 109, 267 (2018).
57.Nieto, A., Bisht, A., Lahiri, D., Zhang, C., and Agarwal, A.: Graphene reinforced metal and ceramic matrix composites: A review. Int. Mater. Rev. 62, 241 (2016).
58.Xiong, D-B., Cao, M., Guo, Q., Tan, Z., Fan, G., Li, Z., and Zhang, D.: Graphene-and-copper artificial nacre fabricated by a preform impregnation process: Bioinspired strategy for strengthening-toughening of metal matrix composite. Acs Nano 9, 6934 (2015).
59.Li, M., Che, H., Liu, X., Liang, S., and Xie, H.: Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles. J. Mater. Sci. 49, 3725 (2014).
60.Zhu, X., Zhao, Y., Ma, L., Zhang, G., Ren, W., Peng, X., Hu, N., Rintoul, L., Bell, J.M., and Yan, C.: Graphene coating makes copper more resistant to plastic deformation. Compos. Commun. 12, 106 (2019).
61.Zhao, Y., Peng, X., Fu, T., Zhu, X., Hu, N., and Yan, C.: Strengthening mechanisms of graphene coated copper under nanoindentation. Comput. Mater. Sci. 144, 42 (2018).
62.Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).
63.Ni, J.L., Zhu, X.F., Pei, Z.L., Gong, J., Sun, C., and Zhang, G.P.: Comparative investigation of fracture behaviour of aluminium-doped ZnO films on a flexible substrate. J. Phys. D: Appl. Phys. 42, 175404 (2009).
64.Zhu, X., Zhang, B., Gao, J., and Zhang, G.: Evaluation of the crack-initiation strain of a Cu–Ni multilayer on a flexible substrate. Scr. Mater. 60, 178 (2009).
65.Zhang, C., Lu, C., Pei, L., Li, J., Wang, R., and Tieu, K.: The negative Poisson’s ratio and strengthening mechanism of nanolayered graphene/Cu composites. Carbon 143, 125 (2019).
66.Wang, J., Zhang, X., Zhao, N., and He, C.: In situ synthesis of copper-modified graphene-reinforced aluminum nanocomposites with balanced strength and ductility. J. Mater. Sci. 54, 5498 (2018).
67.Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A.A., and Ruoff, R.S.: Thermal conductivity of isotopically modified graphene. Nat. Mater. 11, 203 (2012).
68.Yang, Y.J., Zhang, B., Tan, H.F., Luo, X.M., and Zhang, G.P.: Fatigue and fracture reliability of shell-mimetic PE/TiO2 nanolayered composites. Adv. Eng. Mater. 19, 1700246 (2017).
69.Dai, C., Zhu, X., and Zhang, G.: Tensile and fatigue properties of free-standing Cu foils. J. Mater. Sci. Technol. 25, 721 (2009).
70.Yang, Y-J., Zhang, B., Wan, H-Y., and Zhang, G-P.: Optimizing fatigue performance of nacre-mimetic PE/TiO2 nanolayered composites by tailoring thickness ratio. J. Mater. Res. 33, 1543 (2018).


Bilayer graphene-covered Cu flexible electrode with excellent mechanical reliability and electrical performance

  • Yu-Jia Yang (a1), Bin Zhang (a1), Hong-Yuan Wan (a2), Kun Liu (a3) and Guang-Ping Zhang (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed