Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T04:37:14.204Z Has data issue: false hasContentIssue false

Averting cracks caused by insertion reaction in lithium–ion batteries

Published online by Cambridge University Press:  31 January 2011

Zhigang Suo*
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
*
a)Address all correspondence to this author. e-mail: suo@seas.harvard.edu
Get access

Abstract

In a lithium-ion battery, both electrodes are atomic frameworks that host mobile lithium ions. When the battery is being charged or discharged, lithium ions diffuse from one electrode to the other. Such an insertion reaction deforms the electrodes and may cause the electrodes to crack. This paper uses fracture mechanics to determine the critical conditions to avert insertion-induced cracking. The method is applied to cracks induced by the mismatch between phases in LiFePO4.

Keywords

Type
Materials Communications
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nazri, G.A., Pistoia, G.Lithium Batteries: Science and Technology (Kluwer Academic Publishers, Boston, MA 2003)CrossRefGoogle Scholar
2.Basic Research Needs to Assure a Secure Energy Future (U.S. Department of Energy, Washington, DC 2003)Google Scholar
3.Basic Research Needs for Electrical Energy Storage (U.S. Department of Energy, Washington, DC 2007)Google Scholar
4.Broussely, M., Pistoia, G.Industrial Applications of Batteries (Elsevier, Amsterdam 2007)Google Scholar
5.Bruce, P.G.Solid State Electrochemistry (Cambridge University Press 1995)Google Scholar
6.Huggins, R.A.Advanced Batteries (Springer, New York, NY 2009)Google Scholar
7.Go, J., Pyun, I.Investigation of stresses generated during lithium transport through the RF sputter-deposited Li1−δCoO2 film by DQCR technique. J. Electrochem. Soc. 150, A1037 (2003)CrossRefGoogle Scholar
8.Itou, Y., Ukyo, Y.Performance of LiNiCoO2 materials for advanced lithium-ion batteries. J. Power Sources 146, 39 (2005)CrossRefGoogle Scholar
9.Wang, D., Wu, X., Wang, Z., Chen, L.Cracking causing cyclic instability of LiFePO4 cathode material. J. Power Sources 140, 125 (2005)CrossRefGoogle Scholar
10.Aifantis, K.E., Hackney, S.A.An ideal elasticity problem for Li-batteries. J. Mech. Behav. Mater. 14, 413 (2003)CrossRefGoogle Scholar
11.Zaghib, K., Shim, J., Guerfi, A., Charest, P., Striebel, K.Effect of carbon source as additives in LiFePO4 as positive electrode for lithium-ion batteries. Electrochem. Solid-State Lett. 8, A207 (2005)CrossRefGoogle Scholar
12.Chung, S.Y., Bloking, J.T., Chiang, Y.M.Electronically conductive phosphor-olivines as lithium storage electrodes. Nat. Mater. 1, 123 (2002)CrossRefGoogle ScholarPubMed
13.Herle, S.P., Ellis, B., Coombs, N., Nazar, L.F.Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3, 147 (2004)CrossRefGoogle ScholarPubMed
14.Croce, F., Epifanio, A.D., Hassoun, J., Deptula, A., Olczac, T., Scrosati, B.A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem. Solid-State Lett. 5, A47 (2002)CrossRefGoogle Scholar
15.Yamada, A., Chung, S.C., Hinokuma, K.Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224 (2001)CrossRefGoogle Scholar
16.Delacourt, C., Poizot, P., Levasseur, S., Masquelier, C.Size effects on carbon-free LiFePO4 powders. Electrochem. Solid-State Lett. 9, A352 (2006)CrossRefGoogle Scholar
17.Gabrisch, H., Wilcox, J., Doeff, M.M.TEM study of fracturing in spherical and plate-like LiFePO4 particles. Electrochem. Solid-State Lett. 11, A25 (2008)CrossRefGoogle Scholar
18.Chen, G., Song, X., Richardson, T.J.Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett. 9, A295 (2006)CrossRefGoogle Scholar
19.Huggins, R.A., Nix, W.D.Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57 (2000)CrossRefGoogle Scholar
20.Aifantis, K.E., Hackney, S.A., Dempsey, J.P.Design criteria for nanostructured Li-ion batteries. J. Power Sources 165, 874 (2007)CrossRefGoogle Scholar
21.Zhang, X.C., Shyy, W., Sastry, A.M.Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910 (2007)CrossRefGoogle Scholar
22.Christensen, J., Newman, J.Stress generation and fracture in lithium insertion materials. J. Electrochem. Soc. 153, A1019 (2005)CrossRefGoogle Scholar
23.Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997)CrossRefGoogle Scholar
24.Lawn, B.Fracture of Brittle Solids (Cambridge University Press, New York, NY 1993)CrossRefGoogle Scholar
25.Evans, A.G.Microfracture from thermal expansion anisotropy—I. Single phase systems. Acta Metall. 26, 1845 (1978)CrossRefGoogle Scholar
26.Lu, T.C., Yang, J., Suo, Z., Evans, A.G., Hecht, R., Mehrabian, R.Matrix cracking in intermetallic composites caused by thermal expansion mismatch. Acta Metall. Mater. 39, 1883 (1991)CrossRefGoogle Scholar
27.Hutchinson, J.W., Suo, Z.Mixed-mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1992)CrossRefGoogle Scholar
28.Ouyang, C., Shi, S., Wang, Z., Huang, X., Chen, L.First-principles study of Li ion diffusion in LiFePO4. Phys. Rev. B 69, 104303 (2004)CrossRefGoogle Scholar
29.Maxisch, T., Ceder, G.Elastic properties of olivine LixFePO4 from first principles. Phys. Rev. B 73, 174112 (2006)CrossRefGoogle Scholar
30.Hsu, K., Tsay, S., Hwang, B.Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route. J. Mater. Chem. 14, 2690 (2004)CrossRefGoogle Scholar