Skip to main content Accessibility help

Atomic stacking and van-der-Waals bonding in GeTe–Sb2Te3 superlattices

  • Jamo Momand (a1), Felix R.L. Lange (a2), Ruining Wang (a3), Jos E. Boschker (a3), Marcel A. Verheijen (a4), Raffaella Calarco (a3), Matthias Wuttig (a5) and Bart J. Kooi (a1)...


GeTe–Sb2Te3 superlattices have attracted major interest in the field of phase-change memories due to their improved properties compared with their mixed counterparts. However, their crystal structure and resistance-switching mechanism are currently not clearly understood. In this work epitaxial GeTe–Sb2Te3 superlattices have been grown with different techniques and were thoroughly investigated to unravel the structure of their crystalline state with particular focus on atomic stacking and van-der-Waals bonding. It is found that, due to the bonding anisotropy of GeTe and Sb2Te3, the materials intermix to form van-der-Waals heterostructures of Sb2Te3 and stable GeSbTe. Moreover, it is found through annealing experiments that intermixing is stronger for higher temperatures. The resulting ground state structure contradicts the dominant ab-initio results in the literature, requiring revisions of the proposed switching mechanisms. Overall, these findings shed light on the bonding nature of GeTe–Sb2Te3 superlattices and open a way to the understanding of their functionality.


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:


Hide All
1. Ovshinsky, S.R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450 (1968).
2. Wuttig, M. and Yamada, N.: Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824 (2007).
3. Orava, J., Greer, A.L., Gholipour, B., Hewak, D.W., and Smith, C.E.: Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279 (2012).
4. Loke, D., Lee, T.H., Wang, W.J., Shi, L.P., Zhao, R., Yeo, Y.C., Chong, T.C., and Elliott, S.R.: Breaking the speed limits of phase-change memory. Science 336, 1566 (2012).
5. Raoux, S., Burr, G.W., Breitwisch, M.J., Rettner, C.T., Chen, Y.C., Shelby, R.M., Salinga, M., Krebs, D., Chen, S-H., Lung, H-L., and Lam, C.H.: Phase-change random access memory: A scalable technology. IBM J. Res. Dev. 52, 465 (2008).
6. Burr, G.W., Breitwisch, M.J., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jackson, B., Kurdi, B., Lam, C., Lastras, L.A., Padilla, A., Rajendran, B., Raoux, S., and Shenoy, R.S.: Phase change memory technology. J. Vac. Sci. Technol., B 28, 223 (2010).
7. Hosseini, P., Wright, C.D., and Bhaskaran, H.: An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206 (2014).
8. Ríos, C., Stegmaier, M., Hosseini, P., Wang, D., Scherer, T., Wright, C.D., Bhaskaran, H., and Pernice, W.H.P.: Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9, 725 (2015).
9. Ríos, C., Hosseini, P., Taylor, R.A., and Bhaskaran, H.: Color depth modulation and resolution in phase-change material nanodisplays. Adv. Mater. 28, 4720 (2016). doi: 10.1002/adma.201506238.
10. Siegrist, T., Jost, P., Volker, H., Woda, M., Merkelbach, P., Schlockermann, C., and Wuttig, M.: Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202 (2011).
11. Lacaita, A.L. and Redaelli, A.: The race of phase change memories to nanoscale storage and applications. Microelectron. Eng. 109, 351 (2013).
12. Boniardi, M., Redaelli, A., Cupeta, C., Pellizzer, F., Crespi, L., D'Arrigo, G., Lacaita, A.L., and Servalli, G.: Optimization metrics for phase change memory (PCM) cell architectures. In Electron Devices Meeting (IEDM), 2014 IEEE International, 2014; p. 29.1.1. doi: 10.1109/IEDM.2014.7047131.
13. Chong, T.C., Shi, L.P., Zhao, R., Tan, P.K., Li, J.M., Lee, H.K., Miao, X.S., Du, A.Y., and Tung, C.H.: Phase change random access memory cell with superlattice-like structure. Appl. Phys. Lett. 88, 122114 (2006).
14. Simpson, R.E., Fons, P., Kolobov, A.V., Fukaya, T., Krbal, M., Yagi, T., and Tominaga, J.: Interfacial phase-change memory. Nat. Nanotechnol. 6, 501 (2011).
15. Tominaga, J., Fons, P., Kolobov, A., Shima, T., Chong, T.C., Zhao, R., Lee, H.K., and Shi, L.: Role of Ge switch in phase transition: Approach using atomically controlled GeTe/Sb2Te3 superlattice. Jpn. J. Appl. Phys. 47, 5763 (2008).
16. Tominaga, J., Shima, T., Fons, P., Simpson, R., Kuwahara, M., and Kolobov, A.: What is the origin of activation energy in phase-change film? Jpn. J. Appl. Phys. 48, 03A053 (2009).
17. Momand, J., Wang, R., Boschker, J.E., Verheijen, M.A., Calarco, R., and Kooi, B.J.: Interface formation of two- and three-dimensionally bonded materials in the case of GeTe–Sb2Te3 superlattices. Nanoscale 7, 19136 (2015).
18. Casarin, B., Caretta, A., Momand, J., Kooi, B.J., Verheijen, M.A., Bragaglia, V., Calarco, R., Chukalina, M., Yu, X., Robertson, J., Lange, F.R.L., Wuttig, M., Redaelli, A., Varesi, E., Parmigiani, F., and Malvestuto, M.: Revisiting the local structure in Ge–Sb–Te based chalcogenide superlattices. Sci. Rep. 6, 22353 (2016).
19. Wang, R., Bragaglia, V., Boschker, J.E., and Calarco, R.: Intermixing during epitaxial growth of van der Waals bonded nominal GeTe/Sb2Te3 superlattices. Cryst. Growth Des. 16, 3596 (2016). doi: 10.1021/acs.cgd.5b01714.
20. Kooi, B.J. and Hosson, J.T.M.D.: Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of Ge x Sb2Te3+x (x = 1,2,3) phase change material. J. Appl. Phys. 92, 3584 (2002).
21. Matsunaga, T. and Yamada, N.: Structural investigation of GeSb2Te4: A high-speed phase-change material. Phys. Rev. B 69, 104111 (2004).
22. Matsunaga, T., Yamada, N., and Kubota, Y.: Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe–Sb2Te3 pseudobinary systems. Acta Crystallogr. B 60, 685 (2004).
23. Matsunaga, T., Kojima, R., Yamada, N., Kifune, K., Kubota, Y., and Takata, M.: Structural investigation of Ge3Sb2Te6, an intermetallic compound in the GeTe–Sb2Te3 homologous series. Appl. Phys. Lett. 90, 161919 (2007).
24. Goldak, J., Barrett, C.S., Innes, D., and Youdelis, W.: Structure of alpha GeTe. J. Chem. Phys. 44, 3323 (1966).
25. Anderson, T.L. and Krause, H.B.: Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds. Acta Crystallogr. B 30, 1307 (1974).
26. Geim, A.K. and Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013).
27. Yamada, N. and Matsunaga, T.: Structure of laser-crystallized Ge2Sb2+x Te5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020 (2000).
28. Wuttig, M., Lüsebrink, D., Wamwangi, D., Wełnic, W., Gilleßen, M., and Dronskowski, R.: The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater. 6, 122 (2007).
29. Bragaglia, V., Arciprete, F., Zhang, W., Mio, A.M., Zallo, E., Perumal, K., Giussani, A., Cecchi, S., Boschker, J.E., Riechert, H., Privitera, S., Rimini, E., Mazzarello, R., and Calarco, R.: Metal—Insulator transition driven by vacancy ordering in GeSbTe phase change materials. Sci. Rep. 6, 23843 (2016).
30. Zhang, W., Thiess, A., Zalden, P., Zeller, R., Dederichs, P.H., Raty, J-Y., Wuttig, M., Blügel, S., and Mazzarello, R.: Role of vacancies in metal–insulator transitions of crystalline phase-change materials. Nat. Mater. 11, 952 (2012).
31. Jiang, Y., Sun, Y.Y., Chen, M., Wang, Y., Li, Z., Song, C., He, K., Wang, L., Chen, X., Xue, Q-K., Ma, X., and Zhang, S.B.: Fermi-Level tuning of epitaxial Sb2Te3 thin films on graphene by regulating intrinsic defects and substrate transfer doping. Phys. Rev. Lett. 108, 66809 (2012).
32. Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., and Uruga, T.: Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 3, 703 (2004).
33. Tominaga, J., Kolobov, A.V., Fons, P., Nakano, T., and Murakami, S.: Ferroelectric order control of the Dirac-semimetal phase in GeTe–Sb2Te3 superlattices. Adv. Mater. Interfaces 1, 1300027 (2014).
34. Ohyanagi, T., Kitamura, M., Araidai, M., Kato, S., Takaura, N., and Shiraishi, K.: GeTe sequences in superlattice phase change memories and their electrical characteristics. Appl. Phys. Lett. 104, 252106 (2014).
35. Yu, X. and Robertson, J.: Modeling of switching mechanism in GeSbTe chalcogenide superlattices. Sci. Rep. 5, 12612 (2015).
36. Boschker, J.E., Momand, J., Bragaglia, V., Wang, R., Perumal, K., Giussani, A., Kooi, B.J., Riechert, H., and Calarco, R.: Surface reconstruction-induced coincidence lattice formation between two-dimensionally bonded materials and a three-dimensionally bonded substrate. Nano Lett. 14, 3534 (2014).
37. Kolobov, A.V., Tominaga, J., Fons, P., and Uruga, T.: Local structure of crystallized GeTe films. Appl. Phys. Lett. 82, 382 (2003).
38. Tominaga, J., Kolobov, A.V., Fons, P.J., Wang, X., Saito, Y., Nakano, T., Hase, M., Murakami, S., Herfort, J., and Takagaki, Y.: Giant multiferroic effects in topological GeTe–Sb2Te3 superlattices. Sci. Technol. Adv. Mater. 16, 14402 (2015).
39. Saito, Y., Fons, P., Kolobov, A.V., and Tominaga, J.: Self-organized van der Waals epitaxy of layered chalcogenide structures. Phys. Status Solidi B 252, 2151 (2015). doi: 10.1002/pssb.201552335.
40. Koma, A.: Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201–202, 236 (1999).
41. Ross, U., Lotnyk, A., Thelander, E., and Rauschenbach, B.: Microstructure evolution in pulsed laser deposited epitaxial Ge–Sb–Te chalcogenide thin films. J. Alloys Compd. 676, 582 (2016).
42. Katmis, F., Calarco, R., Perumal, K., Rodenbach, P., Giussani, A., Hanke, M., Proessdorf, A., Trampert, A., Grosse, F., Shayduk, R., Campion, R., Braun, W., and Riechert, H.: Insight into the growth and control of single-crystal layers of Ge–Sb–Te phase-change material. Cryst. Growth Des. 11, 4606 (2011).
43. Perumal, K.: Epitaxial Growth of Ge–Sb–Te Based Phase Change Materials (Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Berlin, 2013).
44. Venkatasubramanian, R.: Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61, 3091 (2000).
45. Caylor, J.C., Coonley, K., Stuart, J., Colpitts, T., and Venkatasubramanian, R.: Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl. Phys. Lett. 87, 23105 (2005).
46. Kolobov, A.V., Krbal, M., Fons, P., Tominaga, J., and Uruga, T.: Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. Nat. Chem. 3, 311 (2011).
47. Simpson, R.E., Fons, P., Kolobov, A.V., Krbal, M., and Tominaga, J.: Enhanced crystallization of GeTe from an Sb2Te3 template. Appl. Phys. Lett. 100, 21911 (2012).
48. Zhou, X., Kalikka, J., Ji, X., Wu, L., Song, Z., and Simpson, R.E.: Phase-change memory materials by design: A strain engineering approach. Adv. Mater. 28, 3007 (2016).
49. Momma, K. and Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).


Atomic stacking and van-der-Waals bonding in GeTe–Sb2Te3 superlattices

  • Jamo Momand (a1), Felix R.L. Lange (a2), Ruining Wang (a3), Jos E. Boschker (a3), Marcel A. Verheijen (a4), Raffaella Calarco (a3), Matthias Wuttig (a5) and Bart J. Kooi (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed