Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T03:22:57.052Z Has data issue: false hasContentIssue false

Atomic layer deposition of tungsten disulphide solid lubricant thin films

Published online by Cambridge University Press:  01 December 2004

T.W. Scharf
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
S.V. Prasad
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
T.M. Mayer
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
R.S. Goeke
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
M.T. Dugger
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

The synthesis and characterization of crystalline tungsten disulphide (WS2) solid lubricant thin films grown by atomic layer deposition (ALD) using WF6 and H2S gas precursors was studied. A new catalytic route was established to promote nucleation and growth of WS2 films on silicon surfaces with native oxide. Scanning electron microscopy with energy dispersive spectroscopy and Raman spectroscopy were used to determine the film morphology, composition, and crystallinity. The films exhibited solid lubricating behavior with a steady-state friction coefficient of 0.04 in a dry nitrogen environment.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Suntola, T. and Antson, J., U.S. Patent No. 4 058 430 (1977).Google Scholar
2Suntola, T. and Hyvärinen, J.: Atomic layer epitaxy. Ann. Rev. Mater. Sci. 15, 177 (1985).CrossRefGoogle Scholar
3Ritala, M. and Leskela, M. in Handbook of Thin Films, Vol. 1, edited by Nalwa, H.S. (Academic, San Diego, CA, 2002), p. 103Google Scholar
4George, S.M., Ott, A.W. and Klaus, J.W.: Surface chemistry for atomic layer growth. J. Phys. Chem. 100, 13121 (1996).CrossRefGoogle Scholar
5Mayer, T.M., Elam, J.W., George, S.M., Kotula, P.G. and Goeke, R.S.: Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices. Appl. Phys. Lett. 82, 2883 (2003).CrossRefGoogle Scholar
6Hoivik, N.D., Elam, J.W., Linderman, R.J., Bright, V.M., George, S.M. and Lee, Y.C.: Atomic layer deposited protective coatings for micro-electromechanical systems. Sens. Actuators, A 103, 100 (2003).CrossRefGoogle Scholar
7Prasad, S.V., McDevitt, N.T. and Zabinski, J.S.: Tribology of tungsten disulfide-nanocrystalline zinc oxide adaptive lubricant films from ambient to 500 °C. Wear 237, 186 (2000).CrossRefGoogle Scholar
8Prasad, S.V., Zabinski, J.S. and McDevitt, N.T.: Friction behavior of pulsed laser deposited tungsten disulfide films. Trib. Trans. 38, 57 (1995).CrossRefGoogle Scholar
9Prasad, S.V. and Zabinski, J.S.: Tribology of tungsten disulphide (WS2): Characterization of wear-induced transfer films. J. Mater. Sci. Lett. 12, 1413 (1993).CrossRefGoogle Scholar
10Prasad, S.V., McDevitt, N.T. and Zabinski, J.S.: Tribology of tungsten disulfide films in humid environments: The role of a tailored metal-matrix composite substrate. Wear 230, 24 (1999).CrossRefGoogle Scholar
11Zabinski, J.S., Donley, M.S., Prasad, S.V. and McDevitt, N.T.: Synthesis and characterization of tungsten disulphide films grown by pulsed laser deposition. J. Mater. Sci. 29, 4834 (1994).CrossRefGoogle Scholar
12Cohen, S.R., Rapoport, L., Ponomarev, E.A., Cohen, H., Tsirlina, T., Tenne, R. and Levy-Clement, C.: The tribological behavior of type II textured MX2 (M = Mo, W; X = S, Se) films. Thin Solid Films 324, 190 (1998).CrossRefGoogle Scholar
13Chung, J-W., Dai, Z.R. and Ohuchi, F.S.: WS2 thin films by metal organic chemical vapor deposition. J. Cryst. Growth 186, 137 (1998).CrossRefGoogle Scholar
14Cheon, J., Gozum, J.E. and Girolami, G.S.: Chemical vapor deposition of MoS2 and TiS2 films from the metal-organic precursors Mo(S-t-Bu)(4) and Ti(S-t-Bu)(4). Chem. Mater. 9, 1847 (1997).CrossRefGoogle Scholar
15Elam, J.W., Groner, M.D. and George, S.M.: Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition. Rev. Sci. Instrum. 73, 2981 (2002).CrossRefGoogle Scholar
16Walck, S.D., Zabinski, J.S., McDevitt, N.T. and Bultman, J.E.: Characterization of air-annealed, pulsed laser deposited ZnO-WS2 solid film lubricants by transmission electron microscopy. Thin Solid Films 305, 130 (1997).CrossRefGoogle Scholar
17Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S. and Stupp, B.C.: Hertzian stress contribution to low friction behavior of thin MoS2 coatings. Appl. Phys. Lett. 57, 995 (1990).CrossRefGoogle Scholar
18Didziulis, S.V., Fleischauer, P.D., Soriano, B.L. and Gardos, M.N.: Chemical and tribological studies of MoS2 films on SiC substrates. Surf. Coat. Technol. 43, 652 (1990).CrossRefGoogle Scholar
19Prasad, S.V. and Zabinski, J.S.: Super slippery solids. Nature 387, 761 (1997).CrossRefGoogle Scholar