Skip to main content Accessibility help
×
Home

Atomic force microscopy cantilever simulation by finite element methods for quantitative atomic force acoustic microscopy measurements

  • F.J. Espinoza Beltrán (a1), J. Muñoz-Saldaña (a2), D. Torres-Torres (a2), R. Torres-Martínez (a3) and G.A. Schneider (a4)...

Abstract

Measurements of vibrational spectra of atomic force microscopy (AFM) microprobes in contact with a sample allow a good correlation between resonance frequencies shifts and the effective elastic modulus of the tip-sample system. In this work we use finite element methods for modeling the AFM microprobe vibration considering actual features of the cantilever geometry. This allowed us to predict the behavior of the cantilevers in contact with any sample for a wide range of effective tip-sample stiffness. Experimental spectra for glass and chromium were well reproduced for the numerical model, and stiffness values were obtained. We present a method to correlate the experimental resonance spectrum to the effective stiffness using realistic geometry of the cantilever to numerically model the vibration of the cantilever in contact with a sample surface. Thus, supported in a reliable finite element method (FEM) model, atomic force acoustic microscopy can be a quantitative technique for elastic-modulus measurements. Considering the possibility of tip-apex wear during atomic force acoustic microscopy measurements, it is necessary to perform a calibration procedure to obtain the tip-sample contact areas before and after each measurement.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: jmunoz@qro.cinvestav.mx

References

Hide All
1.Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57 (1992).
2.Binnig, G., Quate, C.F., Gerber, Ch.: Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).
3.Binnig, G., Gerber, C., Stoll, E., Albrecht, T.R., Quate, C.F.: Atomic resolution with the atomic force microscopy. Europhys. Lett. 3, 1281 (1987).
4.Yamamoto, S., Ishida, T., Mizutani, W., Tokumoto, H., Yamada, H.: Identifications of materials using direct force modulation technique with magnetic AFM cantilever. Jpn. J. Appl. Phys. 36, 3868 (1997).
5.Rabe, U., Janser, K., Arnold, W.: Vibrations of free and surface-coupled atomic force microscope cantilevers. Rev. Sci. Instrum. 67, 3281 (1996).
6.Dupas, E., Gremaud, G., Kulik, A., Loubet, J.L.: High-frequency mechanical spectroscopy with an atomic force microscope. Rev. Sci. Instrum. 72, 3891 (2001).
7.Burnham, N.A., Gremaud, G., Kulik, A.J., Gallo, P-J., Oulevey, F.: Material’s properties measurements: Choosing the optimal scanning probe microscope configuration. J. Vac. Sci. Technol., B 14, 1308 (1996).
8.Rabe, U., Turner, J., Arnold, W.: Analysis of the high-frequency response of atomic force microscope cantilevers. Appl. Phys. A 66, S277 (1998).
9.Turner, J.A., Hirsekorn, S., Rabe, U., Arnold, W.: High-frequency response of atomic-force microscope cantilevers. J. Appl. Phys. 82, 966 (1997).
10.Rabe, U., Amelio, S., Kopycinska, M., Hirsekorn, S., Kempf, M., Göken, M., Arnold, W.: Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surf. Interface Anal. 33, 65 (2002).
11.Reinstaedtler, M., Rabe, U., Scherer, V., Turner, J.A., Arnold, W.: Imaging of flexural and torsional resonance modes of atomic force microscopy cantilevers using optical interferometry. Surf. Sci. 532, 1152 (2003).
12.Arinero, R., Lévêque, G.: Vibration of the cantilever in force modulation microscopy analysis by a finite element model. Rev. Sci. Instrum. 74, 104 (2003).
13.Drobek, T., Stark, R.W., Gräber, M., Heckl, W.M.Overtone atomic force microscopy studies of decagonal quasicrystal surfaces. New Journal of Physics 1, 1.1 (1999).
14.Drobek, T., Stark, R.W., Gräber, M., Heckl, W.M.: Tapping-mode atomic force microscopy and phase-imaging in higher eigenmodes. Appl. Phys. Lett. 74, 3296 (1999).
15.Yamanaka, K., Takano, H., Tomita, E., Fujihira, M.: Lateral force modulation atomic force microscopy of Langmuir-Blodgett film in water. Jpn. J. Appl. Phys. 35, 5421 (1996).
16.Kopycinska-Müller, M., Geiss, R.H., Rice, P., Hurley, D.C. Influence of tip wear on atomic force acoustic microscopy experiments, in Scanning-Probe and Other Novel Microscopies of Local Phenomena in Nanostructured Materials edited by Kalinin, S.V., Goldberg, B., Eng, L.M., and Huey, D. (Mater. Res. Soc. Symp. Proc. 838E, Warrendale, PA, 2005), p. O10.16.1.
17.Metrology Digital Instruments Veeco Force Modulation Manual, Santa Barbara, CA, 93117(805), 957 (1999).
18.Rasband, W. Research Services Branch, National Institute of Mental Health, Bethesda, MD.
19.ANSYS ANSYS Theory Reference Manual, 9th ed., Version 5.5, (SAS IP, Inc., Canonsburg, PA, 1998).
20.Johnson, K.: Contact Mechanics (Cambridge University Press, England, 1987).
21.Rabe, U., Amelio, S., Kopycinska, M., Hirsekorn, S., Kempf, M., Göken, M., Arnold, W.: Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surf. Interface Anal. 33, 65 (2002).
22.Muraoka, M.: Sensitivity-enhanced atomic force acoustic microscopy with concentrated-mass cantilevers. Nanotechnology 16, 542 (2005).
23.Passeri, D., Bettucci, A., Germano, M., Rossi, M., Alippi, A., Orlanducci, S., and Ciavarella, M.L. Terranova M.: Effect of tip geometry on local indentation modulus measurement via atomic force acoustic microscopy technique. Rev. Sci. Instrum. 76, 093904 (2005).
24.Kalinin, S.V., Rodriguez, B.J., Shin, J., Jesse, S., Grichko, V., Thundat, T., Baddorf, A.P., Gruverman, A.: Bioelectromechanical imaging by scanning-probe microscopy: Galvani’s experiment at the nanoscale. Ultramicroscopy 106, 334 (2006).
25.Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and contact of elastic solids. Proc. R. Soc. London A 324, 301 (1971).
26.Derjaguin, B.V., Muller, V.M., Toporov, Yu.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53(2), 314 (1975).

Keywords

Atomic force microscopy cantilever simulation by finite element methods for quantitative atomic force acoustic microscopy measurements

  • F.J. Espinoza Beltrán (a1), J. Muñoz-Saldaña (a2), D. Torres-Torres (a2), R. Torres-Martínez (a3) and G.A. Schneider (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed