Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-18T22:56:57.380Z Has data issue: false hasContentIssue false

Atomic and molecular layer deposition in pursuing better batteries

Published online by Cambridge University Press:  08 July 2020

Xiangbo Meng*
Affiliation:
Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas72701, USA
*
a)e-mail: xbmeng@uark.edu
Get access

Abstract

In the past decade, atomic and molecular layer deposition (ALD and MLD), these two sister techniques have been attracting more and more research attention to address technical challenges in various advanced battery systems. The charm of both ALD and MLD lies in their unique mechanism for growing a large variety of functional materials, featuring uniform and conformal films enabled at the atomic/molecular level at low temperature. Using ALD and MLD, to date, there have been many excitements achieved in research. These will ultimately be reflected on technical innovations that will help revolutionize our lifestyles. This invited article gives the first comprehensive review briefing on the journey of ALD and MLD in pursuing better batteries and highlighting many exciting progresses in various advanced battery systems. It is expected that this review will help boost many more efforts in using ALD and MLD for new battery technologies in the coming decade.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Thackeray, M.M., Wolverton, C., and Isaacs, E.D.: Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 78547863 (2012).CrossRefGoogle Scholar
Winter, M. and Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 42454270 (2004).CrossRefGoogle ScholarPubMed
Whittingham, M.S.: History, evolution, and future status of energy storage. Proc. IEEE 100(Special Centennial Issue), 15181534 (2012).CrossRefGoogle Scholar
Deng, D.: Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 3, 385418 (2015).CrossRefGoogle Scholar
Liang, Y., Zhao, C.-Z., Yuan, H., Chen, Y., Zhang, W., Huang, J.-Q., Yu, D., Liu, Y., Titirici, M.-M., Chueh, Y.-L., Yu, H., and Zhang, Q. et al. : A review of rechargeable batteries for portable electronic devices. InfoMat 1, 632 (2019).CrossRefGoogle Scholar
May, G.J., Davidson, A., and Monahov, B.: Lead batteries for utility energy storage: A review. J. Energy Storage 15, 145157 (2018).CrossRefGoogle Scholar
Crabtree, G., Kócs, E., and Trahey, L.: The energy-storage frontier: Lithium-ion batteries and beyond. MRS Bull. 40, 10671078 (2015).CrossRefGoogle Scholar
Zhang, S.: Status, opportunities, and challenges of electrochemical energy storage. Front. Energy Res. 1, 8 (2013).CrossRefGoogle Scholar
Blomgren, G.E.: The development and future of lithium ion batteries. J. Electrochem. Soc. 164, A5019A5025 (2017).CrossRefGoogle Scholar
Judez, X., Eshetu, G. G., Li, C., Rodriguez-Martinez, L. M., Zhang, H., and Armand, M.: Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes. Joule 2, 22082224 (2018).CrossRefGoogle Scholar
Yu, X. and Manthiram, A.: Electrode-electrolyte interfaces in lithium-based batteries. Energy Environ. Sci. 11, 527543 (2018).CrossRefGoogle Scholar
Gauthier, M., Carney, T. J., Grimaud, A., Giordano, L., Pour, N., Chang, H.-H., Fenning, D. P., Lux, S. F., Paschos, O., Bauer, C., Maglia, F., Lupart, S., Lamp, P., Shao-Horn, Y. et al. : Electrode–electrolyte interface in Li-ion batteries: Current understanding and new insights. J. Phys. Chem. Lett. 6, 46534672 (2015).CrossRefGoogle ScholarPubMed
George, S.M.: Atomic layer deposition: An overview. Chem. Rev. 110, 111131 (2010).CrossRefGoogle ScholarPubMed
Meng, X.: An overview of molecular layer deposition for organic and organic-inorganic hybrid materials: Mechanisms, growth characteristics, and promising applications. J. Mater. Chem. A 5, 1832618378 (2017).CrossRefGoogle Scholar
Meng, X., Yang, X.Q., and Sun, X.L.: Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv. Mater. 24, 35893615 (2012).CrossRefGoogle ScholarPubMed
Zhu, C., Han, K., Geng, D., Ye, H., and Meng, X.: : Achieving high-performance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings: An overview. Electrochim. Acta 251, 710728 (2017).CrossRefGoogle Scholar
Meng, X.: Atomic layer deposition of solid-state electrolytes for next-generation lithium-ion batteries and beyond: Opportunities and challenges. Energy Storage Mater. 30, 296328 (2020).CrossRefGoogle Scholar
Sun, Q., Lau, K. C., Geng, D., and Meng, X. et al. : Atomic and molecular layer deposition for superior lithium-sulfur batteries: Strategies, performance, and mechanisms. Batteries Supercaps 1, 4168 (2018).CrossRefGoogle Scholar
Shin, H.-S., Seo, G. W., Kwon, K., Jung, K.-N., Lee, S. I., Choi, E., Kim, H., Hwang, J.-H., and Lee, J.-W.: A combined approach for high-performance Li–O2 batteries: A binder-free carbon electrode and atomic layer deposition of RuO2 as an inhibitor–promoter. APL Mater. 6, 047702 (2018).CrossRefGoogle Scholar
Meng, X.: Atomic-scale surface modifications and novel electrode designs for high-performance sodium-ion batteries via atomic layer deposition. J. Mater. Chem. A 5, 1012710149 (2017).CrossRefGoogle Scholar
Armand, M. and Tarascon, J.M.: Building better batteries. Nature 451, 652657 (2008).CrossRefGoogle ScholarPubMed
Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 43034418 (2004).CrossRefGoogle ScholarPubMed
Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 1150311618 (2014).CrossRefGoogle ScholarPubMed
Agrawal, R.C. and Pandey, G.P.: Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J. Phys. D Appl. Phys. 41, 223001 (2008).CrossRefGoogle Scholar
Chen, X. and Vereecken, P.M.: Solid and solid-like composite electrolyte for lithium ion batteries: Engineering the ion conductivity at interfaces. Adv. Mater. Interfaces 6, 1800899 (2019).CrossRefGoogle Scholar
Famprikis, T., Canepa, P., Dawson, J.A., Saiful Islam, M., and Masquelier, C.: Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 12781291 (2019).CrossRefGoogle ScholarPubMed
Zhao, Q., Stalin, S., Zhao, C.-Z., and Archer, L. A.: : Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229252 (2020).CrossRefGoogle Scholar
Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S.: Research development on sodium-ion batteries. Chem. Rev. 114, 1163611682 (2014).CrossRefGoogle ScholarPubMed
Zhang, W., Liu, Y., and Guo, Z.: Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5, eaav7412 (2019).CrossRefGoogle ScholarPubMed
Ponrouch, A., Bitenc, J., Dominko, R., Lindahl, N., Johansson, P., and Palacin, M. R.: Multivalent rechargeable batteries. Energy Storage Mater. 20, 253262 (2019).CrossRefGoogle Scholar
Winter, M.: The solid electrolyte interphase – The most important and the least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem. 223, 13951406 (2009).CrossRefGoogle Scholar
Xiao, Y., Wang, Y., Bo, S.-H., Kim, J. C., Miara, L. J., and Ceder, G.: Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105126 (2020).CrossRefGoogle Scholar
Suntola, T. and Antson, J.: Method for producing compound thin films. United States Patent 4,058,430, 1977.Google Scholar
Yoshimura, T., Tatsuura, S., and Sotoyama, W.: Polymer films formed with monolayer growth steps by molecular layer deposition. Appl. Phys. Lett. 59, 482484 (1991).CrossRefGoogle Scholar
Groner, M.D., Fabreguette, F. H., Elam, J. W., and George, S. M.: Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639645 (2004).CrossRefGoogle Scholar
Puurunen, R.L.: Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005).CrossRefGoogle Scholar
George, S.M., Yoon, B., and Dameron, A.A.: Surface chemistry for molecular layer deposition of organic and hybrid organic−inorganic polymers. Acc. Chem. Res. 42, 498508 (2009).CrossRefGoogle ScholarPubMed
Hämäläinen, J., Ritala, M., and Leskelä, M.: Atomic layer deposition of noble metals and their oxides. Chem. Mater. 26, 786801 (2014).CrossRefGoogle Scholar
Kim, H.: Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. J. Vac. Sci. Technol. B 21, 22312261 (2003).CrossRefGoogle Scholar
Miikkulainen, V., Leskelä, M., Ritala, M., and Puurunen, R. L.: Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 113, 021301 (2013).CrossRefGoogle Scholar
Puurunen, R.L.: Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005).CrossRefGoogle Scholar
Dasgupta, N.P., Meng, X., Elam, J. W., Martinson, A. B., et al. : Atomic layer deposition of metal sulfide materials. Acc. Chem. Res. 48, 341348 (2015).CrossRefGoogle ScholarPubMed
Guo, Z. and Wang, X.: Atomic layer deposition of the metal pyrites FeS2, CoS2, and NiS2. Angew. Chem. Int. Ed. 57, 58985902 (2018).CrossRefGoogle ScholarPubMed
Wang, J., Guo, Z., Xiong, W., and Wang, X.: Synthesis of thin-film metal pyrites by an atomic layer deposition approach. Chemistry 24, 1856818574 (2018).CrossRefGoogle ScholarPubMed
Mäntymäki, M., Ritala, M., and Leskelä, M.: Metal fluorides as lithium-ion battery materials: An atomic layer deposition perspective. Coatings 8, 277 (2018).CrossRefGoogle Scholar
Cai, J., Han, X., Wang, X., and Meng, X.: Atomic layer deposition of two-dimensional layered materials: Processes, growth mechanisms, and characteristics. Matter 2, 587630 (2020).CrossRefGoogle Scholar
Zhou, H. and Bent, S.F.: Fabrication of organic interfacial layers by molecular layer deposition: Present status and future opportunities. J. Vac. Sci. Technol. A 31, 040801 (2013).CrossRefGoogle Scholar
Shao, H.-I., Umemoto, S., Kikutani, T., and Okui, N.: Layer-by-layer polycondensation of nylon 66 by alternating vapour deposition polymerization. Polymer 38, 459462 (1997).CrossRefGoogle Scholar
Du, Y. and George, S.M.: Molecular layer deposition of nylon 66 films examined using in situ FTIR spectroscopy. J. Phys. Chem. C 111, 85098517 (2007).CrossRefGoogle Scholar
Yoshimura, T., Tatsuura, S., Sotoyama, W., Matsuura, A., and Hayano, T.: Quantum wire and dot formation by chemical vapor deposition and molecular layer deposition of one-dimensional conjugated polymer. Appl. Phys. Lett. 60, 268270 (1992).CrossRefGoogle Scholar
Yoshimura, T., Oshima, A., Kim, D.-I., and Morita, Y.: Quantum dot formation in polymer wires by three-molecule molecular layer deposition (MLD) and applications to electro-optic/photovoltaic devices. ECS Trans. 25, 1525 (2009).CrossRefGoogle Scholar
Yoshimura, T., Ebihara, R., and Oshima, A.: Polymer wires with quantum dots grown by molecular layer deposition of three source molecules for sensitized photovoltaics. J. Vac. Sci. Technol. A 29, 051510 (2011).CrossRefGoogle Scholar
Yoshimura, T. and Ishii, S.: Effect of quantum dot length on the degree of electron localization in polymer wires grown by molecular layer deposition. J. Vac. Sci. Technol. A 31, 031501 (2013).CrossRefGoogle Scholar
Kim, A., Filler, M. A., Kim, S., and Bent, S. F.: Layer-by-layer growth on Ge(100) via spontaneous urea coupling reactions. J. Am. Chem. Soc. 127, 61236132 (2005).CrossRefGoogle ScholarPubMed
Loscutoff, P.W., Zhou, H., Clendenning, S. B., and Bent, S. F.: Formation of organic nanoscale laminates and blends by molecular layer deposition. ACS Nano 4, 331341 (2010).CrossRefGoogle ScholarPubMed
Zhou, H. and Bent, S.F.: Molecular layer deposition of functional thin films for advanced lithographic patterning. ACS Appl. Mater. Interfaces 3, 505511 (2011).CrossRefGoogle ScholarPubMed
Zhou, H., Toney, M.F., and Bent, S.F.: Cross-linked ultrathin polyurea films via molecular layer deposition. Macromolecules 46, 56385643 (2013).CrossRefGoogle Scholar
Park, Y.-S., Choi, S.-E., Kim, H., and Lee, J. S.: Fine-tunable absorption of uniformly aligned polyurea thin films for optical filters using sequentially self-limited molecular layer deposition. ACS Appl. Mater. Interfaces 8, 1178811795 (2016).CrossRefGoogle ScholarPubMed
Adamczyk, N.M., Dameron, A.A., and George, S.M.: Molecular layer deposition of poly(p-phenylene terephthalamide) films using terephthaloyl chloride and p-phenylenediamine. Langmuir 24, 20812089 (2008).CrossRefGoogle ScholarPubMed
Peng, Q., Efimenko, K., Genzer, J., and Parsons, G. N.: Oligomer orientation in vapor-molecular-layer-deposited alkyl-aromatic polyamide films. Langmuir 28, 1046410470 (2012).CrossRefGoogle ScholarPubMed
Atanasov, S.E., Losego, M. D., Gong, B., Sachet, E., Maria, J.-P., Williams, P. S., and Parsons, G. N.: Highly conductive and conformal poly(3,4-ethylenedioxythiophene) (PEDOT) thin films via oxidative molecular layer deposition. Chem. Mater. 26, 34713478 (2014).CrossRefGoogle Scholar
Kim, D.H., Atanasov, S. E., Lemaire, P., Lee, K., and Parsons, G.N.: Platinum-free cathode for dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) (PEDOT) formed via oxidative molecular layer deposition. ACS Appl. Mater. Interfaces 7, 38663870 (2015).CrossRefGoogle ScholarPubMed
Miyamae, T., Tsukagoshi, K., Matsuoka, O., Yamamoto, S., and Nozoye, H.: Preparation of polyimide-polyamide random copolymer thin film by sequential vapor deposition polymerization. Jpn. J. Appl. Phys. 41, 746 (2002).CrossRefGoogle Scholar
Loscutoff, P.W., Lee, H.-B.-R., and Bent, S.F.: Deposition of ultrathin polythiourea films by molecular layer deposition. Chem. Mater. 22, 55635569 (2010).CrossRefGoogle Scholar
Ivanova, T.V., Maydannik, P.S., and Cameron, D.C.: Molecular layer deposition of polyethylene terephthalate thin films. J. Vac. Sci. Technol. A 30, 01A121 (2012).CrossRefGoogle Scholar
Dameron, A.A., Seghete, D., Burton, B.B., Davidson, S.D., Cavanagh, A.S., Bertrand, J.A., and George, S.M.: Molecular layer deposition of alucone polymer films using trimethylaluminum and ethylene glycol. Chem. Mater. 20, 33153326 (2008).CrossRefGoogle Scholar
Lee, B.H., Anderson, V.R., and George, S.M.: Molecular layer deposition of zircone and ZrO2/zircone alloy films: Growth and properties. Chem. Vapor Deposition 19, 204212 (2013).CrossRefGoogle Scholar
Hall, R.A., George, S.M., Kim, Y., Hwang, W., Samberg, M.E., Monteiro-Riviere, N.A., and Narayan, R.J.: Growth of zircone on nanoporous alumina using molecular layer deposition. JOM 66, 649653 (2014).CrossRefGoogle Scholar
Salmi, L.D., Heikkilä, M.J., Puukilainen, E., Sajavaara, T., Grosso, D., and Ritala, M.: Studies on atomic layer deposition of MOF-5 thin films. Microporous Mesoporous Mater. 182, 147154 (2013).CrossRefGoogle Scholar
Crowell, J.E.: Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies. J. Vac. Sci. Technol. A 21, S88S95 (2003).CrossRefGoogle Scholar
Kucheyev, S.O., Biener, J., Wang, Y.M., Baumann, T.F., Wu, K.J., Buuren, T.v., Hamza, A.V., Satcher, J.H. Jr., Elam, J.W., and Pellin, M.J.: Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths. Appl. Phys. Lett. 86, 083108 (2005).CrossRefGoogle Scholar
Putkonen, M. and Niinistö, L.: Atomic layer deposition of B2O3 thin films at room temperature. Thin Solid Films 514, 145149 (2006).CrossRefGoogle Scholar
Cai, J., Ma, Z., Wejinya, U., Zou, M., Liu, Y., Zhou, H., and Meng, X.: A revisit to atomic layer deposition of zinc oxide using diethylzinc and water as precursors. J. Mater. Sci. 54, 52365248 (2019).CrossRefGoogle Scholar
Mikko, R. and Markku, L.: Atomic layer epitaxy – A valuable tool for nanotechnology? Nanotechnology 10, 19 (1999).Google Scholar
Knez, M., Nielsch, K., and Niinistö, L.: Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 19, 34253438 (2007).CrossRefGoogle Scholar
Meng, X. and Elam, J.W.: Atomic layer deposition of nanophase materials for electrical energy storage. ECS Trans. 69, 3957 (2015).CrossRefGoogle Scholar
Badot, J.C., Ribes, S., Yousfi, E.B., Vivier, V., Pereira-Ramos, J.P., Baffier, N., and Lincot, D.: Atomic layer epitaxy of vanadium oxide thin films and electrochemical behavior in presence of lithium ions. Electrochem. Solid State Lett. 3, 485488 (2000).CrossRefGoogle Scholar
Snyder, M.Q., Trebukhova, S.A., Ravdel, B., Wheeler, M.C., DiCarlo, J., Tripp, C.P., and DeSisto, W.J.: Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode. J. Power Sources 165, 379385 (2007).CrossRefGoogle Scholar
Kim, S.W., Han, T.H., Kim, J., Gwon, H., Moon, H.S., Kang, S.W., Kim, S.O., and Kang, K.: Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. ACS Nano 3, 10851090 (2009).CrossRefGoogle ScholarPubMed
Meng, X., Banis, M.N., Geng, D., Li, X., Zhang, Y., Li, R., Abou-Rachid, H., and Sun, X.: Controllable atomic layer deposition of one-dimensional nanotubular TiO2. Appl. Surface Sci. 266, 132140 (2013).CrossRefGoogle Scholar
Meng, X., Geng, D., Liu, J., Li, R., and Sun, X.: Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition. Nanotechnology 22, 165602 (2011).CrossRefGoogle ScholarPubMed
Meng, X., Zhang, Y., Sun, S., Li, R., and Sun, X.: Three growth modes and mechanisms for highly structure-tunable SnO2 nanotube arrays of template-directed atomic layer deposition. J. Mater. Chem. 21, 1232112330 (2011).CrossRefGoogle Scholar
Meng, X., Zhong, Y., Sun, Y., Banis, M.N., Li, R., and Sun, X.: Nitrogen-doped carbon nanotubes coated by atomic layer deposited SnO2 with controlled morphology and phase. Carbon 49, 11331144 (2011).CrossRefGoogle Scholar
Li, X., Meng, X., Liu, J., Geng, D., Zhang, Y., Banis, M.N., Li, Y., Yang, J., Li, R., Sun, X., Cai, M., and Verbrugge, M.W.: Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater. 22, 16471654 (2012).CrossRefGoogle Scholar
Meng, X., Geng, D., Liu, J., Banis, M.N., Zhang, Y., Li, R., and Sun, X.: Non-aqueous approach to synthesize amorphous/crystalline metal oxide-graphene nanosheet hybrid composites. J. Phys. Chem. C 114, 1833018337 (2010).CrossRefGoogle Scholar
Meng, X., Liu, J., Li, X., Banis, M.N., Yang, J., Li, R., and Sun, X.: Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes. RSC Adv. 3, 72857288 (2013).CrossRefGoogle Scholar
Riha, S.C., Koegel, A.A., Meng, X., Kim, I.S., Cao, Y., Pellin, M.J., Elem, J.W., and Martinson, A.B.F.: Atomic layer deposition of MnS: Phase control and electrochemical applications. ACS Appl. Mater. interfaces 8, 27742780 (2016).CrossRefGoogle ScholarPubMed
Meng, X., He, K., Su, D., Zhang, X., Sun, C.J., Ren, Y., Wang, H.H., Weng, W., Trahey, L., Canlas, C.P., and Elam, J.W.: Gallium sulfide-single-walled carbon nanotube composites: High-performance anodes for lithium-ion batteries. Adv. Funct. Mater. 24, 54355442 (2014).CrossRefGoogle Scholar
Meng, X., Libera, J.A., Fister, T.T., Zhou, H., Hedlund, J.K., Fenter, P., and Elam, J.W.: Atomic layer deposition of gallium sulfide films using hexakis(dimethylamido)digallium and hydrogen sulfide. Chem. Mater. 26, 10291039 (2014).CrossRefGoogle Scholar
Meng, X., Cao, Y., Libera, J.A., and Elam, J.W.: Atomic layer deposition of aluminum sulfide: Growth mechanism and electrochemical evaluation in lithium-ion batteries. Chem. Mater. 29, 90439052 (2017).CrossRefGoogle Scholar
Chen, X., Zhu, H., Chen, Y.-C., Shang, Y., Cao, A., Hu, L., and Rubloff, G.W.: MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 6, 79487955 (2012).CrossRefGoogle ScholarPubMed
Liu, J., Banis, M.N., Sun, Q., Lushington, A., Lu, R., Sham, T.-K., and Sun, X.: Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries. Adv. Mater. 26, 64726477 (2014).CrossRefGoogle ScholarPubMed
Liu, J., Xiao, B., Banis, M.N., Li, R., Sham, T.-K., and Sun, X.: Atomic layer deposition of amorphous iron phosphates on carbon nanotubes as cathode materials for lithium-ion batteries. Electrochim. Acta 162, 275281 (2015).CrossRefGoogle Scholar
Meng, X., Riha, S.C., Libera, J.A., Wu, Q., Wang, H.-H., Martinson, A.B.F., and Elam, J.W.: Tunable core-shell single-walled carbon nanotube-Cu2S networked nanocomposites as high-performance cathodes for lithium-ion batteries. J. Power Sources 280, 621629 (2015).CrossRefGoogle Scholar
Putkonen, M., Aaltonen, T., Alnes, M., Sajavaara, T., Nilsen, O., and Fjellvag, H.: Atomic layer deposition of lithium containing thin films. J. Mater. Chem. 19, 87678771 (2009).CrossRefGoogle Scholar
Liu, C., Gillette, E.I., Chen, X., Pearse, A.J., Kozen, A.C., Schroeder, M.A., Gregorczyk, K.E., Lee, S.B., and Rubloff, G.W.: An all-in-one nanopore battery array. Nat Nano 9, 10311039 (2014).CrossRefGoogle ScholarPubMed
Pearse, A., Schmitt, T., Sahadeo, E., Stewart, D.M., Kozen, A., Gerasopoulos, K., Talin, A.A., Lee, S.B., Rubloff, G.W., and Gregorczyk, K.E.: Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry. ACS Nano 12, 42864294 (2018).CrossRefGoogle ScholarPubMed
Jung, Y.S., Cavanagh, A.S., Dillon, A.C., Groner, M.D., George, S.M., and Lee, S.H.: Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition. J. Electrochem. Soc. 157, A75A81 (2010).CrossRefGoogle Scholar
Jung, Y.S., Cavanagh, A.S., Riley, L.A., Kang, S.H., Dillon, A.C., Groner, M.D., George, S.M., and Lee, S.H.: Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv. Mater. 22, 21722176 (2010).CrossRefGoogle ScholarPubMed
Li, X., Liu, J., Meng, X., Tang, Y., Banis, M.N., Yang, J., Hu, Y., Li, R., Cai, M., and Sun, X.: Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. J. Power Sources 247, 5769 (2014).CrossRefGoogle Scholar
Liu, Y., Wang, X., Cai, J., Han, X., Geng, D., Li, J., and Meng, X.: Atomic-scale tuned interface of nickel-rich cathode for enhanced electrochemical performance in lithium-ion batteries. J. Mater. Sci. Technol. 54, 7786 (2020).CrossRefGoogle Scholar
Gao, H., Cai, J., Xu, G.-L., Li, L., Ren, Y., Meng, X., Amine, K., and Chen, Z.: Surface modification for suppressing interfacial parasitic reactions of a nickel-rich lithium-ion cathode. Chem. Mater. 31, 27232730 (2019).CrossRefGoogle Scholar
Xie, J., Sendek, A.D., Cubuk, E.D., Zhang, X., Lu, Z., Gong, Y., Wu, T., Shi, F., Liu, W., Reed, E.J., and Cui, Y.: Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling. ACS Nano 11, 70197027 (2017).CrossRefGoogle ScholarPubMed
Shapira, A., Tiurin, O., Solomatin, N., Auinat, M., Meitav, A., and Ein-Eli, Y.: Robust AlF3 atomic layer deposition protective coating on LiMn1.5Ni0.5O4 particles: An advanced Li-ion battery cathode material powder. ACS Appl. Energy Mater. 1, 68096823 (2018).CrossRefGoogle Scholar
Cao, Y., Meng, X., and Elam, J.W.: Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem 3, 858863 (2016).CrossRefGoogle Scholar
Xiao, B., Wang, B., Liu, J., Kaliyappan, K., Sun, Q., Liu, Y., Dadheech, G., Balogh, M.P., Yang, L., Sham, T.-K., Li, R., Cai, M., and Sun, X.: Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy 34, 120130 (2017).CrossRefGoogle Scholar
Lin, C.-F., Fan, X., Pearse, A., Liou, S.-C., Gregorczyk, K., Leskes, M., Wang, C., Lee, S.B., Rubloff, G.W., and Noked, M.: Highly reversible conversion-type FeOF composite electrode with extended lithium insertion by atomic layer deposition LiPON protection. Chem. Mater. 29, 87808791 (2017).CrossRefGoogle Scholar
Kim, H., Lee, J.T., Lee, D.C., Magasinski, A., Cho, W.I., and Yushin, G.: Plasma-enhanced atomic layer deposition of ultrathin oxide coatings for stabilized lithium-sulfur batteries. Adv. Energy Mater. 3, 13081315 (2013).CrossRefGoogle Scholar
Meng, X., Comstock, D.J., Fister, T.T., and Elam, J.W.: Vapor-phase atomic-controllable growth of amorphous Li2S for high-performance lithium–sulfur batteries. ACS Nano 8, 1096310972 (2014).CrossRefGoogle ScholarPubMed
Lu, J., Lei, Y., Lau, K.C., Luo, X., Du, P., Wen, J., Assary, R.S., Das, U., Miller, D.J., Elam, J.W., Albishri, H.M., El-Hady, D.A., Sun, Y.-K., Curtiss, L.A., and Amine, K.A.: A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013).CrossRefGoogle ScholarPubMed
Zhao, L., Zhao, J., Hu, Y.-S., Li, H., Zhou, Z., Armand, M., and Chen, L.: Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv. Energy Mater. 2, 962965 (2012).CrossRefGoogle Scholar
Schuppert, N.D., Mukherjee, S., Bates, A.M., Son, E.-J., Choi, M.J., and Park, S.: Ex-situ X-ray diffraction analysis of electrode strain at TiO2 atomic layer deposition/α-MoO3 interface in a novel aqueous potassium ion battery. J. Power Sources 316, 160169 (2016).CrossRefGoogle Scholar
Zhao, K., Wang, C., Yu, Y., Yan, M., Wei, Q., He, P., Dong, Y., Zhang, Z., Wang, X., and Mai, L.: Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5, 1800848 (2018).CrossRefGoogle Scholar
Pal, D., Mathur, A., Singh, A., Pakhira, S., Singh, R., and Chattopadhyay, S.: Binder-free ZnO cathode synthesized via ALD by direct growth of hierarchical ZnO nanostructure on current collector for high-performance rechargeable aluminium-ion batteries. ChemistrySelect 3, 1251212523 (2018).CrossRefGoogle Scholar
Loebl, A.J., Oldham, C.J., Devine, C.K., Gong, B., Atanasov, S.E., Parsons, G.N., and Fedkiw, P.S.: Solid electrolyte interphase on lithium-ion carbon nanofiber electrodes by atomic and molecular layer deposition. J. Electrochem. Soc. 160, A1971A1978 (2013).CrossRefGoogle Scholar
Piper, D.M., Travis, J.J., Young, M., Son, S.-B., Kim, S.C., Oh, K.H., George, S.M., Ban, C., and Lee, S.-H.: Reversible high-capacity Si nanocomposite anodes for lithium-ion batteries enabled by molecular layer deposition. Adv. Mater. 26, 15961601 (2014).CrossRefGoogle ScholarPubMed
Zhao, Y., Goncharova, L.V., Sun, Q., Li, X., Lushington, A., Wang, B., Li, R., Dai, F., Cai, M., and Sun, X.: Robust metallic lithium anode protection by the molecular-layer-deposition technique. Small Methods 2, 1700417 (2018).CrossRefGoogle Scholar
Zhao, Y., Goncharova, L.V., Zhang, Q., Kaghazchi, P., Sun, Q., Lushington, A., Wang, B., Li, R., and Sun, X.: Inorganic–organic coating via molecular layer deposition enables long life sodium metal anode. Nano Lett. 17, 56535659 (2017).CrossRefGoogle ScholarPubMed
Kaliyappan, K., Or, T., Deng, Y.-P., Hu, Y., Bai, Z., and Chen, Z.: Constructing safe and durable high-voltage P2 layered cathodes for sodium ion batteries enabled by molecular layer deposition of alucone. Adv. Funct. Mater. 30, 1910251 (2020).CrossRefGoogle Scholar
Nisula, M. and Karppinen, M.: Atomic/molecular layer deposition of lithium terephthalate thin films as high rate capability Li-ion battery anodes. Nano Lett. 16, 12761281 (2016).CrossRefGoogle ScholarPubMed
Ban, C. and George, S.M.: Molecular layer deposition for surface modification of lithium-ion battery electrodes. Adv. Mater. Interfaces 3, 1600762 (2016).CrossRefGoogle Scholar
Meng, X., Wang, X., Geng, D., Ozgit-Akgun, C., Schneider, N., and Elam, J.W.: Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology. Mater. Horizons 4, 133154 (2017).CrossRefGoogle Scholar
Zhao, Y., Zheng, K., and Sun, X.: addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule 2, 25832604 (2018).CrossRefGoogle Scholar
Whittingham, M.S.: Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 1141411443 (2014).CrossRefGoogle ScholarPubMed
Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 42714302 (2004).CrossRefGoogle ScholarPubMed
Zamfir, M.R., Nguyen, H.T., Moyen, E., Lee, Y.H., and Pribat, D.: Silicon nanowires for Li-based battery anodes: A review. J. Mater. Chem. A 1, 95669586 (2013).CrossRefGoogle Scholar
Park, C.-M., Kim, J.-H., Kim, H., and Sohn, H.-J.: Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 31153141 (2010).CrossRefGoogle ScholarPubMed
Wallas, J.M., Welch, B.C., Wang, Y., Liu, J., Hafner, S.E., Qiao, R., Yoon, T., Cheng, Y.-T., George, S.M., and Ban, C.: Spatial molecular layer deposition of ultrathin polyamide to stabilize silicon anodes in lithium-ion batteries. ACS Appl. Energy Mater. 2, 41354143 (2019).CrossRefGoogle Scholar
Ma, J., Hu, P., Cui, G., and Chen, L.: Surface and interface issues in spinel LiNi0.5Mn1.5O4: Insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 28, 35783606 (2016).CrossRefGoogle Scholar
Park, J.S., Meng, X., Elam, J.W., Hao, S., Wolverton, C., Kim, C., and Cabana, J.: Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries. Chem. Mater. 26, 31283134 (2014).CrossRefGoogle Scholar
Tiurin, O., Solomatin, N., Auinat, M., and Ein-Eli, Y.: Atomic layer deposition (ALD) of lithium fluoride (LiF) protective film on Li-ion battery LiMn1.5Ni0.5O4 cathode powder material. J. Power Sources 448, 227373 (2020).CrossRefGoogle Scholar
Chae, S., Soon, J., Jeong, H., Lee, T.j., Ryu, J.H., and Oh, S.M.: Passivating film artificially built on LiNi0.5Mn1.5O4 by molecular layer deposition of (pentafluorophenylpropyl)trimethoxysilane. J. Power Sources 392, 159167 (2018).CrossRefGoogle Scholar
Nayak, P.K., Erickson, E.M., Schipper, F., Penki, T.R., Munichandraiah, N., Adelhelm, P., Sclar, H., Amalraj, F., Markovsky, B., and Aurbach, D.: Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-Ion batteries. Adv. Energy Mater. 8, 1702397 (2018).CrossRefGoogle Scholar
Zhang, X., Meng, X., Elam, J.W., and Belharouak, I.: Electrochemical characterization of voltage fade of Li1.2Ni0.2Mn0.6O2 cathode. Solid State Ionics 268, 231235 (2014).CrossRefGoogle Scholar
Bloom, I., Trahey, L., Abouimrane, A., Belharouak, I., Zhang, X., Wu, Q., Lu, W., Abraham, D.P., Bettge, M., Elam, J.W., Meng, X., Burrell, A.K., Ban, C., Tenent, R., Nanda, J., and Dudney, N.: Effect of interface modifications on voltage fade in 0.5Li2MnO3.0.5LiNi0.375Mn0.375CO0.25O2 cathode materials. J. Power Sources 249, 509514 (2014).CrossRefGoogle Scholar
Pan, H., Zhang, S., Chen, J., Gao, M., Liu, Y., Zhu, T., and Jiang, Y.: Li- and Mn-rich layered oxide cathode materials for lithium-ion batteries: A review from fundamentals to research progress and applications. Mol. Syst. Design Eng. 3, 748803 (2018).CrossRefGoogle Scholar
Gao, Y., Shang, Z., He, X., White, T., Park, J., and Liang, X.: Cooperating effects of conformal iron oxide (FeOx) ALD coating and post-annealing on Li-Rich layered cathode materials. Electrochim. Acta 318, 513524 (2019).CrossRefGoogle Scholar
Hoskins, A.L., McNeary, W.W., Millican, S.L., Gossett, T.A., Lai, A., Gao, Y., Liang, X., Musgrave, C.B., and Weimer, A.W.: Nonuniform growth of sub-2 nanometer atomic layer deposited alumina films on lithium nickel manganese cobalt oxide cathode battery materials. ACS Appl. Nano Mater. 2, 69896997 (2019).CrossRefGoogle Scholar
Liu, Y., Wang, X., Cai, J., Han, X., Geng, D., Li, J., and Meng, X.: Atomic-scale tuned interface of nickel-rich cathode for enhanced electrochemical performance in lithium-ion batteries. J. Mater. Sci. Technol. 54, 7786 (2020).CrossRefGoogle Scholar
Yan, P., Zheng, J., Liu, J., Wang, B., Cheng, X., Zhang, Y., Sun, X., Wang, C., and Zhang, J.-G.: Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 3, 600605 (2018).CrossRefGoogle Scholar
Cheng, X., Zheng, J., Lu, J., Li, Y., Yan, P., and Zhang, Y.: Realizing superior cycling stability of Ni-rich layered cathode by combination of grain boundary engineering and surface coating. Nano Energy 62, 3037 (2019).CrossRefGoogle Scholar
Li, X., Liu, J., Banis, M.N., Lushington, A., Li, R., Cai, M., and Sun, X.: Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 7, 768778 (2014).CrossRefGoogle Scholar
Yang, J., Ma, D., Li, Y., Zhang, P., Mi, H., Deng, L., Sun, L., and Ren, X.: Atomic layer deposition of amorphous oxygen-deficient TiO2-x on carbon nanotubes as cathode materials for lithium-air batteries. J. Power Sources 360, 215220 (2017).CrossRefGoogle Scholar
Gong, C., Zhao, L., Li, S., Wang, H., Gong, Y., Wang, R., and He, B.: Atomic layered deposition iron oxide on perovskite LaNiO3 as an efficient and robust bi-functional catalyst for lithium oxygen batteries. Electrochim. Acta 281, 338347 (2018).CrossRefGoogle Scholar
Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., and Zhang, J.-G.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513537 (2014).CrossRefGoogle Scholar
Kozen, A.C., Lin, C.-F., Pearse, A.J., Schroeder, M.A., Han, X., Hu, L., Lee, S.-B., Rubloff, G.W., and Noked, M.: Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 58845892 (2015).CrossRefGoogle ScholarPubMed
Kazyak, E., Wood, K.N., and Dasgupta, N.P.: Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater. 27, 64576462 (2015).CrossRefGoogle Scholar
Lin, C.-F., Kozen, A.C., Noked, M., Liu, C., and Rubloff, G.W.: ALD protection of Li-metal anode surfaces – Quantifying and preventing chemical and electrochemical corrosion in organic solvent. Adv. Mater. Interfaces 3, 1600426 (2016).CrossRefGoogle Scholar
Harrison, K.L., Zavadil, K.R., Hahn, N.T., Meng, X., Elam, J.W., Leenheer, A., Zhang, J.-G., and Jungjohann, K.L.: Lithium self-discharge and its prevention: Direct visualization through in situ electrochemical scanning transmission electron microscopy. ACS Nano 11, 1119411205 (2017).CrossRefGoogle ScholarPubMed
Adair, K.R., Zhao, C., Banis, M.N., Zhao, Y., Li, R., Cai, M., and Sun, X.: Highly stable lithium metal anode interface via molecular layer deposition zircone coatings for long life next-generation battery systems. Angew. Chem. Int. Ed. 58, 1579715802 (2019).CrossRefGoogle ScholarPubMed
Sun, Y., Zhao, Y., Wang, J., Liang, J., Wang, C., Sun, Q., Lin, X., Adair, K.R., Luo, J., Wang, D., Li, R., Cai, M., Sham, T.-K., and Sun, X.: A novel organic “Polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition. Adv. Mater. 31, 1806541 (2019).CrossRefGoogle ScholarPubMed
Zhao, Y., Amirmaleki, M., Sun, Q., Zhao, C., Codirenzi, A., Goncharova, L.V., Wang, C., Adair, K., Li, X., Yang, X., Zhao, F., Li, R., Filleter, T., Cai, M., and Sun, X.: Natural SEI-inspired dual-protective layers via atomic/molecular layer deposition for long-life metallic lithium anode. Matter 1, 12151231 (2019).CrossRefGoogle Scholar
Donders, M.E., Knoops, H.C.M., Kessels, W.M.M., and Notten, P.H.L.: Remote plasma atomic layer deposition of thin films of electrochemically active LiCoO2. ECS Trans. 41, 321330 (2011).CrossRefGoogle Scholar
Gandrud, K.B., Pettersen, A., Nilsen, O., and Fjellvag, H.: High-performing iron phosphate for enhanced lithium ion solid state batteries as grown by atomic layer deposition. J. Mater. Chem. A 1, 90549059 (2013).CrossRefGoogle Scholar
Miikkulainen, V., Ruud, A., Ostreng, E., Nilsen, O., Laitinen, M., Sajavaara, T., and Fjellvag, H.: Atomic layer deposition of spinel lithium manganese oxide by film-body-controlled lithium incorporation for thin-film lithium-ion batteries. J. Phys. Chem. C 118, 12581268 (2014).CrossRefGoogle Scholar
Chen, J.-F., He, X.-D., Li, D.-J., and Feng, J.-M.: Improved potassium ion storage performance of graphite by atomic layer deposition of aluminum oxide coatings. Int. J. Energy Res. 44, 42604268 (2020).CrossRefGoogle Scholar
Su, J., Tsuruoka, T., Tsujita, T., Nishitani, Y., Nakura, K., and Terabe, K.: Atomic layer deposition of a magnesium phosphate solid electrolyte. Chem. Mater. 31, 55665575 (2019).CrossRefGoogle Scholar