Skip to main content Accessibility help

Atom probe tomography applied to the analysis of irradiated microstructures

  • Emmanuelle A. Marquis (a1)


With its particular ability to image solute clusters in three dimensions and impurity segregation to selected interfaces and grain boundaries, atom probe tomography has provided unique insight into the effects of irradiation on materials microstructures. This article reviews the contribution of atom probe tomography to our understanding of behaviors and responses of structural materials under irradiation. Possible atom probe tomography based approaches and common data analysis methods to analyze the microstructural features often observed in irradiated materials are described. In particular, the analysis of solute clustering, solute segregation, and void imaging are discussed in the context of radiation-induced hardening of austenitic steels and reactor pressure vessel steels, and the development of oxide dispersion strengthened steels, radiation-induced solute segregation to grain boundaries for stress corrosion cracking or corrosion issues, and to understand the swelling response of irradiated materials. While highlighting the unique information that atom probe tomography can offer, common limitations, current challenges, and outstanding technical questions regarding data analysis and interpretation are also presented.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Joel Ribis



Hide All
1. Zinkle, S.J. and Busby, J.T.: Structural materials for fission and fusion energy. Mater. Today 12, 1219 (2009).
2. Nanstad, R.K., Stoller, R.E., Miller, M.K., and Sokolov, M.A.: In-service degradation and life extension of nuclear reactor vessels: Combining experiments and modelling. In Proceedings of the First International Conference on Ageing Studies and Lifetime Extension of Materials, Mallison, L.G. ed.; Kluwer Academic/Plenum Publishers: New York, Oxford, 2001; pp. 565582.
3. Sokolov, M.A., Littrell, K.C., and Nanstad, R.K.: Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone M3LW-13OR0402012, Report on Small-Angle Neutron Scattering Experiments of Irradiated RPV Materials (Oak Ridge National Laboratory, 2012).
4. Cerezo, A., Warren, P.J., and Smith, G.D.W.: Some aspects of image projection in the field-ion microscope. Ultramicroscopy 79, 251257 (1999).
5. Vurpillot, F., Gault, B., Geiser, B.P., and Larson, D.J.: Reconstructing atom probe data: A review. Ultramicroscopy 132, 1930 (2013).
6. Kelly, T.F. and Miller, M.K.: Invited review article: Atom probe tomography. Rev. Sci. Instrum. 78, 031101 (2007).
7. Gault, B., Moody, M.P., Cairney, J.M., and Ringer, S.P.: Atom Probe Microscopy (Springer, 2012).
8. Miller, M.K. and Hetherington, M.G.: Local magnification effects in the atom probe. Surf. Sci. 246, 442449 (1991).
9. De Geuser, F., Gault, B., Bostel, A., and Vurpillot, F.: Correlated field evaporation as seen by atom probe tomography. Surf. Sci. 601, 536543 (2007).
10. Da Costa, G., Wang, H., Duguay, S., Bostel, A., Blavette, D., and Deconihout, B.: Advance in multi-hit detection and quantization in atom probe tomography. Rev. Sci. Instrum. 83, 123709 (2012).
11. Miller, M.K. and Smith, G.D.W.: An atom probe study of the anomalous evaporation of alloys containing Si. Ultramicroscopy 5, 238239 (1980).
12. Marquis, E.A., Geiser, B.P., Prosa, T.J., and Larson, D.J.: Evolution of tip shape during field evaporation of complex multilayer structures. J. Microsc. 241, 225233 (2011).
13. Marquis, E.A. and Hyde, J.M.: Applications of atom-probe tomography to the characterisation of solute behaviours. Mater. Sci. Eng., R 69, 3762 (2010).
14. Vaumousse, D., Cerezo, A., and Warren, P.J.: A procedure for quantification of precipitates microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215221 (2003).
15. Stephenson, L.T., Moody, M.P., Liddicoat, P.V., and Ringer, S.P.: New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc. Microanal. 13, 448463 (2007).
16. Cerezo, A. and Davin, L.: Aspects of the observation of clusters in the 3-dimensional atom probe. Surf. Interface Anal. 39, 184188 (2007).
17. Styman, P.D., Hyde, J.M., Wilford, K., and Smith, G.D.W.: Quantitative methods for the APT analysis of thermally aged RPV steels. Ultramicroscopy 132, 258264 (2013).
18. Williams, C.A., Haley, D., Marquis, E.A., Smith, G.D.W., and Moody, M.P.: Defining clusters in APT reconstructions of ODS steels. Ultramicroscopy 132, 271278 (2012).
19. Burke, M.G. and Brenner, S.S.: Microstructural investigation of irradiated pressure vessel steel weld metal. J. Phys. Colloques 47, 239244 (1986).
20. Miller, M.K., Nanstad, R.K., Sokolov, M.A., and Russell, K.F.: The effects of irradiation, annealing and reirradiation on RPV steels. J. Nucl. Mater. 351, 216222 (2006).
21. Auger, P., Pareige, P., Welzel, S., and Van Duysen, J.C.: Synthesis of atom probe experiments on irradiation-induced solute segregation in French ferritic pressure vessel steels. J. Nucl. Mater. 280, 331344 (2000).
22. Odette, G.R.: Radiation induced microstructural evolution in reactor pressure vessel steels. MRS Symp. 373, 137 (1995).
23. Miller, M.K., Powers, K.A., Nanstad, R.K., and Efsing, P.: Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences. J. Nucl. Mater. 437, 107115 (2013).
24. Styman, P.D., Hyde, J.M., Wilford, K., Morley, A., and Smith, G.D.W.: Precipitation in long term thermally aged high copper, high nickel model RPV steel welds. Prog. Nucl. Energy 57, 8692 (2012).
25. Wells, P., Yamamoto, T., Milot, M.B.T., Cole, J., Wu, Y., and Odette, G.R.: Evolution of manganese–nickel–silicon-dominated phases in highly irradiated reactor pressure vessel steels. Acta Mater. 80, 205219 (2014).
26. Odette, G.R., Liu, C.L., and Wirth, B.D.: On the composition and structure of nanoprecipitates in irradiated pressure vessel steels. Mater. Res. Soc. Symp. Proc. 439, 457 (1997).
27. Miller, M.K., Wirth, B.D., and Odette, G.R.: Precipitation in neutron-irradiated Fe–Cu and Fe–Cu–Mn model alloys: A comparison of APT and SANS data. Mater. Sci. Eng., A 353, 133139 (2003).
28. Morley, A., Sha, G., Hirosawa, S., Cerezo, A., and Smith, G.D.W.: Determining the composition of small features in atom probe: bcc Cu-rich precipitates in an Fe-rich matrix. Ultramicroscopy 109, 535540 (2009).
29. Novy, S., Pareige, P., and Pareige, C.: Atomic scale analysis and phase separation understanding in a thermally aged Fe–20 at.%Cr alloy. J. Nucl. Mater. 384, 96102 (2009).
30. Bachhav, M., Robert Odette, G., and Marquis, E.A.: α′ precipitation in neutron-irradiated Fe–Cr alloys. Scr. Mater. 74, 4851 (2014).
31. Chen, Y., Chou, P.H., and Marquis, E.A.: Quantitative atom probe tomography characterization of microstructures in a proton irradiated 304 stainless steel. J. Nucl. Mater. 451, 130136 (2014).
32. Odette, G.R., Alinger, M.J., and Wirth, B.D.: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471503 (2008).
33. Larson, D.J., Maziasz, P.J., Kim, I.S., and Miyahara, K.: Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti+Y2O3 ferritic alloy. Scr. Mater. 44, 359364 (2001).
34. Miller, M.K., Kenik, E.A., Russell, K.F., Heatherly, L., Hoelzer, D.T., and Maziasz, P.J.: Atom probe tomography of nanoscale particles in ODS ferritic alloys. Mater. Sci. Eng. A 353, 140145 (2003).
35. Miller, M.K., Russell, K.F., and Hoelzer, D.T.: Characterization of precipitates in MA/ODS ferritic alloys. J. Nucl. Mater. 351, 261268 (2006).
36. Brocq, M., Radiguet, B., Le Breton, J.M., Cuvilly, F., Pareige, P., and Legendre, F.: Nanoscale characterisation and clustering mechanism in an Fe-Y2O3 model ODS alloy processed by reactive ball milling and annealing. Acta Mater. 58, 18061814 (2010).
37. Etienne, A., Cunningham, N.J., Wu, Y., and Odette, G.R.: Effects of friction stir welding and post-weld annealing on nanostructured ferritic alloy. Mater. Sci. Technol. 27, 724728 (2011).
38. Certain, A.G., Field, K.G., Allen, T.R., Miller, M.K., Bentley, J., and Busby, J.T.: Response of nanoclusters in a 9Cr ODS steel to 1 dpa, 525 degrees C proton irradiation. J. Nucl. Mater. 407, 29 (2010).
39. Williams, C.A., Smith, G.D.W., and Marquis, E.A.: The effect of Ti on the coarsening behavior of oxygen-rich nanoparticles in oxide-dispersion-strengthened steels after annealing at 1200 degrees C. Scr. Mater. 67, 108111 (2012).
40. Marquis, E.A.: Core/shell structures of oxygen-rich nanofeatures in oxide-dispersion strengthened Fe-Cr alloys. Appl. Phys. Lett. 93, (2008).
41. Wells, P., Cunningham, N.J., and Odette, G.R.: Recent progress on understanding and quantifying atom probe tomography artifacts for high evaporation rate nm-scale phases in Fe based alloys. In DOE/ER-0313/51, ed. Fusion Reactor Materials Program2011. pp. 921.
42. Larson, D.J., Marquis, E.A., Rice, P.M., Prosa, T.J., Geiser, B.P., Yang, S.H., and Parkin, S.S.P.: Manganese diffusion in annealed magnetic tunnel junctions with MgO tunnel barriers. Scr. Mater. 64, 673676 (2011).
43. Williams, C.A., Marquis, E.A., Cerezo, A., and Smith, G.D.W.: Nanoscale characterisation of ODS-Eurofer 97 steel: An atom-probe tomography study. J. Nucl. Mater. 400, 3745 (2010).
44. Klimenkov, M., Lindau, R., and Moslang, A.: New insights into the structure of ODS particles in the ODS-Eurofer alloy. J. Nucl. Mater. 386, 553556 (2009).
45. Certain, A., Kuchibhatla, S., Shutthanandan, V., Hoelzer, D.T., and Allen, T.R.: Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J. Nucl. Mater. 434, 311321 (2013).
46. Lescoat, M.L., Ribis, J., Chen, Y., Marquis, E.A., Bordas, E., Trocellier, P., Serruys, Y., Gentils, A., Kaïtasov, O., de Carlan, Y., and Legris, A.: Radiation-induced Ostwald ripening in oxide dispersion strengthened ferritic steels irradiated at high ion dose. Acta Mater. 78, 328340 (2014).
47. London, A.J., Lozano-Perez, S., Santra, S., Amirthapandian, S., Panigrahi, B.K., Sundar, C.S., and Grovenor, C.R.M.: Comparison of atom probe tomography and transmission electron microscopy analysis of oxide dispersion strengthened steels. J. Phys.: Conf. Ser. 522, 012028 (2014).
48. Lin, P., Palumbo, G., Erb, U., and Aust, K.T.: Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scr. Metall. Mater. 33, 13871392 (1995).
49. Lejček, P.: Grain Boundary Segregation in Metals (Springer, 2010).
50. Watanabe, S., Takamatsu, Y., Sakaguchi, N., and Takahashi, H.: Sink effect of grain boundary on radiation-induced segregation in austenitic stainless steel. J. Nucl. Mater. 283287(Part 1), 152156 (2000).
51. Hu, R., Smith, G.D.W., and Marquis, E.A.: Effect of grain boundary orientation on radiation-induced segregation in a Fe-15.2 at%Cr alloy. Acta Mater. (2013).
52. Bachhav, M., Odette, G.R., and Marquis, E.A.: Microstructural changes in a neutron-irradiated Fe–6 at.%Cr alloy. J. Nucl. Mater. 453, 334339 (2014).
53. Mandal, S., Pradeep, K.G., Zaefferer, S., and Raabe, D.: A novel approach to measure grain boundary segregation in bulk polycrystalline materials in dependence of the boundaries' five rotational degrees of freedom. Scr. Mater. 81, 1619 (2014).
54. Herbig, M., Raabe, D., Li, Y.J., Choi, P., Zaefferer, S., and Goto, S.: Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112, 126103 (2014).
55. Moody, M.P., Tang, F., Gault, B., Ringer, S.P., and Cairney, J.M.: Atom probe crystallography: Characterization of grain boundary orientation relationships in nanocrystalline aluminium. Ultramicroscopy 111, 493499 (2011).
56. Araullo-Peters, V.J., Gault, B., Shrestha, S.L., Yao, L., Moody, M.P., Ringer, S.P., and Cairney, J.M.: Atom probe crystallography: Atomic-scale 3-D orientation mapping. Scr. Mater. 66, 907910 (2012).
57. Felfer, P., Ceguerra, A., Ringer, S., and Cairney, J.: Applying computational geometry techniques for advanced feature analysis in atom probe data. Ultramicroscopy 132, 100106 (2013).
58. Bachhav, M., Chen, Y., Marquis, E.A., and Geiser, B.: Measuring chemical segregation at grain boundaries by atom probe tomography. Microsc. Microanal. 19, 940941 (2013).
59. Krakauer, B.W. and Seidman, D.N.: Absolute atomic scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. Phys. Rev. B 49, 6724 (1993).
60. Gault, B., Danoix, F., Hoummada, K., Mangelinck, D., and Leitner, H.: Impact of directional walk on atom probe microanalysis. Ultramicroscopy 113, 182191 (2012).
61. Toyama, T., Nozawa, Y., Van Renterghem, W., Matsukawa, Y., Hatakeyama, M., Nagai, Y., Al Mazouzi, A., and Van Dyck, S.: Grain boundary segregation in neutron-irradiated 304 stainless steel studied by atom probe tomography. J. Nucl. Mater. 425, 7175 (2012).
62. Etienne, A., Radiguet, B., Cunningham, N.J., Odette, G.R., and Pareige, P.: Atomic scale investigation of radiation-induced segregation in austenitic stainless steels. J. Nucl. Mater. 406, 244250 (2010).
63. Etienne, A., Radiguet, B., Cunningham, N.J., Odette, G.R., Valiev, R., and Pareige, P.: Comparison of radiation-induced segregation in ultrafine-grained and conventional 316 austenitic stainless steels. Ultramicroscopy 111, 659663 (2011).
64. Miller, M.K., Pareige, P., and Burke, M.G.: Understanding pressure vessel steels: An atom probe perspective. Mater. Charact. 44, 235254 (2000).
65. Miller, M.K.: Atom probe tomography characterization of solute segregation to dislocations. Microsc. Res. Tech. 69, 359365 (2006).
66. Williams, C.A., Hyde, J.M., Smith, G.D.W., and Marquis, E.A.: Effects of heavy-ion irradiation on solute segregation to dislocations in oxide-dispersion-strengthened Eurofer 97 steel. Nucl Mater. 412, 105 (2011).
67. Bhattacharya, A., Meslin, E., Henry, J., Pareige, C., Décamps, B., Genevois, C., Brimbal, D., and Barbu, A.: Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe–Cr alloys. Acta Mater. 78, 394403 (2014).
68. Brenner, S.S. and Seidman, D.N.: Field-ion microscope observations of voids in neutron-irradiated molybdenum. Radiat. Eff. Defects Solids 24, 7378 (1975).
69. Godfrey, T.J., Lewis, R.J., Smith, D.A., and Smith, G.D.W.: On the nature and distribution of defects in tungsten lamp wire. J. Less-Common Met. 44, 319326 (1976).
70. Miller, M.K., Longstreth-Spoor, L., and Kelton, K.F.: Detecting density variations and nanovoids. Ultramicroscopy 111, 469472 (2011).
71. Birdseye, P.J., Smith, D.A., and Smith, G.D.W.: Analogue investigations of electric field distribution and ion trajectories in the field ion microscope. J. Phys. D: Appl. Phys. 7, 1642 (1974).
72. Edmondson, P.D., Parish, C.M., Zhang, Y., Hallen, A., and Miller, M.K.: Helium bubble distributions in a nanostructured ferritic alloy. J. Nucl. Mater. 434, 210216 (2013).
73. Hyde, J.M., Burke, M.G., Smith, G.D.W., Styman, P., Swan, H., and Wilford, K.: Uncertainties and assumptions associated with APT and SANS characterisation of irradiation damage in RPV steels. J. Nucl. Mater. (2013).
74. Robertson, I.M., Schuh, C.A., Vetrano, J.S., Browning, N.D., Field, D.P., Jensen, D.J., Miller, M.K., Baker, I., Dunand, D.C., Dunin-Borkowski, R., Kabius, B., Kelly, T., Lozano-Perez, S., Misra, A., Rohrer, G.S., Rollett, A.D., Taheri, M.L., Thompson, G.B., Uchic, M., Wang, X-L., and Was, G.: Towards an integrated materials characterization toolbox. J. Mater. Res. 26, 13411383 (2011).


Related content

Powered by UNSILO

Atom probe tomography applied to the analysis of irradiated microstructures

  • Emmanuelle A. Marquis (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.