Skip to main content Accessibility help
×
Home

Artificially nanostructured n-type SiGe bulk thermoelectrics through plasma enhanced growth of alloy nanoparticles from the gas phase

  • N. Stein (a1), N. Petermann (a1), R. Theissmann (a1), G. Schierning (a1), R. Schmechel (a1) and H. Wiggers (a1)...

Abstract

SiGe alloys belong to the class of classic high temperature thermoelectric materials. By the means of nanostructuring, the performance of this well-known material can be further enhanced. Additional grain boundaries and point defects added to the alloy structure result in a strong decrease in thermal conductivity because of reduced lattice contribution to the overall thermal conductivity. Hence, the figure of merit can be increased. To obtain a nanostructured bulk material, a nanosized raw material is essential. In this work, a new approach toward nanostructured SiGe alloys is presented where alloyed nanoparticles are synthesized from a homogeneous mixture of the respective precursors in a microwave plasma reactor. As-prepared nanoparticles are compacted to a dense bulk material by a field assisted sintering technique. A figure of merit of zT = 0.5 ± 0.09 at 450 °C and a peak zT of 0.8 ± 0.15 at 1000 °C could be achieved for a nanostructured, 0.8% phosphorus-doped Si80Ge20 alloy without any further optimization.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: niklas.stein@uni-due.de

References

Hide All
1.Majumdar, A.: Thermoelectricity in semiconductor nanostructures. Science 303, 777 (2004).
2.Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).
3.Lan, Y., Minnich, A.J., Chen, G., and Ren, Z.: Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357 (2010).
4.Yan, X., Joshi, G., Liu, W., Lan, Y., Wang, H., Lee, S., Simonson, J.W., Poon, S.J., Tritt, T.M., Chen, G., and Ren, Z.F.: Enhanced thermoelectric figure of merit of p-type half-Heuslers. Nano Lett. 11, 556 (2011).
5.Bux, S.K., Blair, R.G., Gogna, P.K., Lee, H., Chen, G., Dresselhaus, M.S., Kaner, R.B., and Fleurial, J.-P.: Nanostructured bulk silicon as an effective thermoelectric material. Adv. Mater. (19, 2445 (2009).
6.Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard Iii, W.A., and Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).
7.Mingo, N., Hauser, D., Kobayashi, N.P., Plissonnier, M., and Shakouri, A.: “Nanoparticle-in-Alloy” approach to efficient thermoelectrics: silicides in SiGe. Nano Lett. 9, 711 (2009).
8.Wang, X.W., Lee, H., Lan, Y.C., Zhu, G.H., Joshi, G., Wang, D.Z., Yang, J., Muto, A.J., Tang, M.Y., Klatsky, J., Song, S., Dresselhaus, M.S., Chen, G., and Ren, Z.F.: Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 93, 193121 (2008).
9.Zhu, G.H., Lee, H., Lan, Y.C., Wang, X.W., Joshi, G., Wang, D.Z., Yang, J., Vashaee, D., Guilbert, H., Pillitteri, A., Dresselhaus, M.S., Chen, G., and Ren, Z.F.: Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Phys. Rev. Lett. 102, 196803 (2009).
10.Gurav, A., Kodas, T., Pluym, T., and Xiong, Y.: Aerosol processing of materials. Aerosol Sci. Technol. 19, 411 (1993).
11.Knipping, J., Wiggers, H., Rellinghaus, B., Roth, P., Konjhodzic, D., and Meier, C.: Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. J. Nanosci. Nanotechnol. 4, 1039 (2004).
12.Munir, Z., Anselmi-Tamburini, U., and Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006).
13.Schierning, G., Theissmann, R., Wiggers, H., Sudfeld, D., Ebbers, A., Franke, D., Witusiewicz, V.T., and Apel, M.: Microcrystalline silicon formation by silicon nanoparticles. J. Appl. Phys. 103, 084305 (2008).
14.Dismukes, J.P., Ekstrom, L., and Paff, R.J.: Lattice parameter and density in germanium-silicon alloys. J. Phys. Chem. 68, 3021 (1964).
15.Rodriguez-Carvajal, J.: FULLPROF: A program for Rietveld refinement and pattern matching analysis. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 1990, p. 127.
16.Cape, J.A. and Lehman, G.W.: Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity. J. Appl. Phys. 34, 1909 (1963).
17.Schwesig, D., Schierning, G., Theissmann, R., Stein, N., Petermann, N., Wiggers, H., Schmechel, R., and Wolf, D.E.: From nanoparticles to nanocrystalline bulk: Field assisted sintering of silicon nanoparticles. Nanotechnology 22, 135601 (2011).
18.Rieger, M.M. and Vogl, P.: Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates. Phys. Rev. B 48, 14276 (1993).
19.Schäffler, F.: SiGe, in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, edited by Levinshtein, M.E., Rumyantsev, S.L., and Shur, M.S. (John Wiley & Sons, New York, 2001), pp. 149188.
20.Stegner, A.R., Pereira, R.N., Lechner, R., Klein, K., Wiggers, H., Stutzmann, M., and Brandt, M.S.: Doping efficiency in freestanding silicon nanocrystals from the gas phase: Phosphorus incorporation and defect-induced compensation. Phys. Rev. B 80, 165326 (2009).
21.Lee, H., Wang, D., Wang, W., Ren, Z., Klotz, B., Tang, M.Y., Yang, R., Gogna, P., Fleurial, J-P., Dresselhaus, M.S., and Chen, G.: Thermoelectric properties of Si/Ge nano-composite. International Conference on Thermoelectrics, ICT Proceedings, June 19–23, 2005, pp. 269271.
22.Meddins, H.R. and Parrot, J.E.: The thermal and thermoelectric properties of sintered germanium-silicon alloys. J. Phys. C: Solid State Phys. 9, 1263 (1976).
23.Rowe, D.M., Shukla, V.S., and Savvides, N.: Phonon scattering at grain boundaries in heavily doped fine-grained silicon-germanium alloys. Nature 290, 765 (1981).
24.Rowe, D.M. and Shukla, V.S.: The effect of phonon-grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot-pressed silicon germanium alloy. J. Appl. Phys. 52, 7421 (1981).
25.Takashiri, M., Borca-Tasciuc, T., Jacquot, A., Miyazaki, K., and Chen, G.: Structure and thermoelectric properties of boron doped nanocrystalline Si0.8Ge0.2 thin film. J. Appl. Phys. 100, 054315 (2006).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed