Skip to main content Accessibility help

Application of small-scale testing for investigation of ion-beam-irradiated materials

  • Daniel Kiener (a1), Andrew M. Minor (a2), Osman Anderoglu (a3), Yongqiang Wang (a3), Stuart A. Maloy (a3) and Peter Hosemann (a4)...


Small-scale testing techniques such as nanoindentation and micro-/nanocompression are promising methods for addressing mechanical properties of ion-beam-irradiated materials. We performed different proton irradiations and critically evaluated the results obtained from nanoindentation and pillar compression, both performed parallel and perpendicular to the irradiation direction. Experiments parallel to beam direction suffer from variation of material properties with penetration depth. This is improved by cross-sectional experiments, thereby probing the effect of different doses along the beam penetration depth on mechanical properties. Finally, we demonstrate that, compared with nanoindentation, miniaturized uniaxial compression experiments offer a more reliable and straightforward interpretation of the mechanical data, as they impose a nominally uniaxial stress on a well-defined volume at a specific position. Moreover, the exposed pillar geometry is not influenced by surface contamination and enables in situ observation of the governing mechanical processes, which is typically not possible during indentation experiments in a half-space geometry.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Kinchin, G. and Pease, R.: The displacement of atoms in solids by radiation. Rep. Prog. Phys. 18, 1 (1955).
2.Wirth, B.D.: How does radiation damage materials? Science 318, 923 (2007).
3.Bai, X.-M., Voter, A.F., Hoagland, R.G., Nastasi, M., and Uberuaga, B.P.: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).
4.Byun, T.S. and Maloy, S.A.: Dose dependence of mechanical properties in tantalum and tantalum alloys after low-temperature irradiation. J. Nucl. Mater. 377, 72 (2008).
5.Maloy, S.A., Romero, T., James, M.R., and Dai, Y.: Tensile testing of EP-823 and HT-9 after irradiation in STIP II. J. Nucl. Mater. 356, 56 (2006).
6.Odette, G.R., Alinger, M.J., and Wirth, B.D.: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471 (2008).
7.Singh, B.N. and Zinkle, S.J.: Defect accumulation in pure fcc metals in the transient regime: A review. J. Nucl. Mater. 206, 212 (1993).
8.Hosemann, P.: Studying radiation damage in structural materials by using ion accelerators. Rev. Accel Sci. Technol. 4, 161 (2011).
9.Azevedo, C.R.F.: A review on neutron-irradiation-induced hardening of metallic components. Eng. Fail. Anal. 18, 1921 (2011).
10.Byun, T.S. and Farrell, K.: Tensile properties of Inconel 718 after low-temperature neutron irradiation. J. Nucl. Mater. 318, 292 (2003).
11.Lucas, G.E. and Gelles, D.S.: The influence of irradiation on fracture and impact properties of fusion reactor materials. J. Nucl. Mater. 155157, 164 (1988).
12.Olander, D.R.: Fundamental Aspects of Nuclear Reactor Fuel Elements (University of Michigan, Michigan, 1976).
13.Matsukawa, Y., Briceno, M., and Robertson, I.M.: Combining in situ transmission electron microscopy and molecular dynamics computer simulations to reveal the interaction mechanisms of dislocations with stacking-fault tetrahedron in nuclear materials. Microsc. Res. Tech. 72, 284 (2009).
14.Li, N., Mara, N.A., Wang, Y.Q., Nastasi, M., and Misra, A.: Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles. Scr. Mater. 64, 974 (2011).
15.Wei, Q.M., Li, N., Mara, N., Nastasi, M., and Misra, A.: Suppression of irradiation hardening in nanoscale V/Ag multilayers. Acta Mater. 59, 6331 (2011).
16.Was, G.S., Busby, J.T., Allen, T., Kenik, E.A., Jensson, A., Bruemmer, S.M., Gan, J., Edwards, A.D., Scott, P.M., and Andreson, P.L.: Emulation of neutron irradiation effects with protons: Validation of principle. J. Nucl. Mater. 300, 198 (2002).
17.Hosemann, P., Dai, Y., Stergar, E., Leitner, H., Olivas, E., Nelson, A.T., and Maloy, S.A.: Large- and small-scale materials testing of HT-9 irradiated in the STIP Irradiation Program. Exp. Mech. 51, 1095 (2011).
18.Hosemann, P., Stergar, E., Peng, L., Dai, Y., Maloy, S.A., Pouchon, M.A., Shiba, K., Hamaguchi, D., and Leitner, H.: Macro- and microscale mechanical testing and local electrode atom probe measurements of STIP-irradiated F82H, Fe-8Cr ODS and Fe-8Cr-2W ODS. J. Nucl. Mater. 417, 274 (2011).
19.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
20.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).
21.Kiener, D., Grosinger, W., Dehm, G., and Pippan, R.: A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single crystal copper samples. Acta Mater. 56, 580 (2008).
22.Legros, M., Gianola, D.S., and Motz, C.: Quantitative in situ mechanical testing in electron microscopes. MRS Bull. 35, 354 (2010).
23.Kiener, D. and Minor, A.M.: Source truncation and exhaustion: Insights from quantitative in situ TEM tensile testing. Nano Lett. 11, 3816 (2011).
24.Kiener, D. and Minor, A.M.: Source-controlled yield and hardening of Cu(100) studied by in situ transmission electron microscopy. Acta Mater. 59, 1328 (2011).
25.Ziegler, J.F., Biersack, J.P., and Littmark, U.: The Stopping Range of Ions in Matter (Pergamon Press, New York, 1985).
26.Hosemann, P., Kiener, D., Wang, Y., and Maloy, S.A.: Issues to consider using nanoindentation on shallow ion-beam-irradiated materials. J. Nucl. Mater. 425, 136 (2012).
27.Hosemann, P., Swadener, J.G., Kiener, D., Was, G.S., Maloy, S.A., and Li, N.: An exploratory study to determine applicability of nanohardness and microcompression measurements for yield stress estimation. J. Nucl. Mater. 375, 135 (2008).
28.Kiener, D., Hosemann, P., Maloy, S.A., and Minor, A.M.: In situ nanocompression testing of irradiated copper. Nat. Mater. 10, 608 (2011).
29.Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115 (1970).
30.Harvey, S., Huang, H., Venkataraman, S., and Gerberich, W.W.: Microscopy and microindentation mechanics of single-crystal Fe-3 wt-% Si. 1. Atomic force microscopy of a small indentation. J. Mater. Res. 8, 1291 (1993).
31.Kiener, D., Pippan, R., Motz, C., and Kreuzer, H.G.M.: Microstructural evolution of the deformed volume beneath microindents in tungsten and copper. Acta Mater. 54, 2801 (2006).
32.Rester, M., Motz, C., and Pippan, R.: Microstructural investigation of the volume beneath nanoindentations in copper. Acta Mater. 55, 6427 (2007).
33.Nibur, K.A. and Bahr, D.F.: Identifying slip systems around indentations in FCC metals. Scr. Mater. 49, 1055 (2003).
34.Minor, A.M., Asif, S.A.S., Shan, Z.W., Stach, E.A., Cyrankowski, E., Wyrobek, T.J., and Warren, O.L.: A new view of the onset of plasticity during the nanoindentation of aluminum. Nat. Mater. 5, 697 (2006).
35.Fischer-Cripps, A.C.: Nanoindentation (Springer, New York, 2004).
36.Burnett, P.J. and Page, T.F.: Surface softening in silicon by ion-implantation. J. Mater. Sci. 19, 845 (1984).
37.Chicot, D. and Lesage, J.: Absolute hardness of films and coatings. Thin Solid Films 254, 123 (1995).
38.Saha, R. and Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).
39.Burnett, P.J. and Rickerby, D.S.: The relationship between hardness and scratch adhesion. Thin Solid Films 154, 403 (1987).
40.McLaughlin, K.K. and Clegg, W.J.: Deformation underneath low-load indentations in copper. J. Phys. D 41, 1 (2008).
41.Zaafarani, N., Raabe, D., Singh, R.N., Roters, F., and Zaefferer, S.: Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater. 54, 1863 (2006).
42.Schulz, F. and Hanemann, H.: Die Bestimmung der Mikrohärte von Metallen Z. Metallkd. 33, 124 (1941).
43.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).
44.Liu, Y. and Ngan, A.H.W.: Depth dependence of hardness in copper single crystals measured by nanoindentation. Scr. Mater. 44, 237 (2001).
45.Pharr, G.M., Herbert, E.G., and Gao, Y.: The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Ann. Rev. Mater. Res. 40, 271 (2010).
46.Cordill, M.J., Moody, N.R., and Gerberich, W.W.: The role of dislocation walls for nanoindentation to shallow depths. Int. J. Plast. 25, 281 (2009).
47.Singh, D.R.P., Chawla, N., Tang, G., and Shen, Y.L.: Micropillar compression of Al/SiC nanolaminates. Acta Mater. 58, 6628 (2010).
48.Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
49.Zhang, H., Schuster, B.E., Wei, Q., and Ramesh, K.T.: The design of accurate microcompression experiments. Scr. Mater. 54, 181 (2006).
50.Uchic, M.D., Shade, P.A., and Dimiduk, D.: Plasticity of micrometer-scale single crystals in compression. Ann. Rev. Mater. Res. 39, 361 (2009).
51.Kiener, D., Motz, C., and Dehm, G.: Microcompression testing: A critical discussion of experimental constraints. Mater. Sci. Eng., A 505, 79 (2009).
52.Kiener, D., Motz, C., Dehm, G., and Pippan, R.: Overview on established and novel FIB-based miniaturized mechanical testing using in-situ SEM. Int. J. Mater. Res. 100, 1074 (2009).
53.Michler, J., Wasmer, K., Meier, S., Ostlund, F., and Leifer, K.: Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Appl. Phys. Lett. 90, 043123 (2007).
54.Ye, J., Mishra, R.K., Pelton, A.R., and Minor, A.M.: Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater. 58, 490 (2010).
55.Girault, B., Schneider, A.S., Frick, C.P., and Arzt, E.: Strength effects in micropillars of a dispersion-strengthened superalloy. Adv. Eng. Mater. 12, 385 (2010).
56.Dimiduk, D.M., Uchic, M.D., and Parthasarathy, T.A.: Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065 (2005).
57.Buzzi, S., Dietiker, M., Kunze, K., Spolenak, R., and Loffler, J.F.: Deformation behavior of silver submicrometer pillars prepared by nanoimprinting. Philos. Mag. 89, 869 (2009).
58.Moser, B., Wasmer, K., Barbieri, L., and Michler, J.: Strength and fracture of Si micropillars: A new scanning electron microscopy-based microcompression test. J. Mater. Res. 22, 1004 (2007).
59.Rinaldi, A., Peralta, P., Friesen, C., and Sieradzki, K.: Sample-size effects in the yield behavior of nanocrystalline nickel. Acta Mater. 56, 511 (2008).
60.Kiener, D., Guruprasad, P.J., Keralavarma, S.M., Dehm, G., and Benzerga, A.A.: Work hardening in micropillar compression: In situ experiments and modeling. Acta Mater. 59, 3825 (2011).
61.Shade, P.A., Wheeler, R., Choi, Y.S., Uchic, M.D., Dimiduk, D.M., and Fraser, H.L.: A combined experimental and simulation study to examine lateral constraint effects on microcompression of single-slip oriented single crystals. Acta Mater. 57, 4580 (2009).
62.Raabe, D., Ma, D., and Roters, F.: Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study. Acta Mater. 55, 4567 (2007).
63.Gianola, D.S. and Eberl, C.: Micro- and nanoscale tensile testing of materials. JOM 61, 24 (2009).
64.Kiener, D., Motz, C., Schöberl, T., Jenko, M., and Dehm, G.: Determination of mechanical properties of copper at the micrometer scale. Adv. Eng. Mater. 8, 1119 (2006).
65.Kiener, D., Motz, C., Rester, M., and Dehm, G.: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng., A 459, 262 (2007).
66.Volkert, C.A. and Minor, A.M.: Focused ion-beam microscopy and micromachining. MRS Bull. 32, 389 (2007).
67.Bei, H., Shim, S., George, E.P., Miller, M.K., Herbert, E.G., and Pharr, G.M.: Compressive strengths of molybdenum alloy micropillars prepared using a new technique. Scr. Mater. 57, 397 (2007).
68.Shim, S., Bei, H., Miller, M.K., Pharr, G.M., and George, E.P.: Effects of focused ion-beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater. 57, 503 (2009).
69.McElhaney, K.W., Vlassak, J.J., and Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300 (1998).
70.Busby, J.T., Hash, M.C., and Was, G.S.: The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J. Nucl. Mater. 336, 267 (2005).
71.Mukouda, I., Shimomura, Y., Iiyama, T., Harada, Y., Katano, Y., Nakazawa, T., Yamaki, D., and Noda, K.: Microstructure in pure copper irradiated by simultaneous multi ion beam of hydrogen, helium and self ions. J. Nucl. Mater. 283287, 302 (2000).
72.Zinkle, S.J., and Knoll, R.W.: A Literature Review of Radiation Damage Data for Copper and Copper Alloys (University of Wisconsin, Madison, WI, 1984).
73.Shimomura, Y. and Mukouda, I.: Void formation in neutron- and ion-irradiated copper and nickel. in Microstructural Processes in Irradiated Materials, edited by Zinkle, S.J., Lucas, G.E., Ewing, R.C., and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999); p. 527.
74.Westmoreland, J.E. and Malmberg, P.R.. Cooperative radiation effects simulation orogram. in NRL Memorandum Report 2555, edited by Steele, L.E. and Wolicki, E.A. (Naval Research Laboratory, Washington, DC, 1972); p. 80.
75.Kenik, E.A. and Mitchell, T.E.: Orientation dependence of threshold displacement energy in copper and vanadium. Philos. Mag. 32, 815 (1975).
76.Fish, R.L., Straalsund, J.L., Hunter, C.W., and Holmes, J.J.: Swelling and tensile property evaluations of high-fluence EBR-II thimbles. ASTM Spec. Tech. Publ. 529, 149 (1973).
77.Robach, J.S., Robertson, I.M., Lee, H.J., and Wirth, B.D.: Dynamic observations and atomistic simulations of dislocation-defect interactions in rapidly quenched copper and gold. Acta Mater. 54, 1679 (2006).
78.Marian, J., Martinez, E., Lee, H.J., and Wirth, B.D.: Micro-/mesoscale computational study of dislocation-stacking-fault tetrahedron interactions in copper. J. Mater. Res. 24, 3628 (2009).
79.Oh, S.H., Rentenberger, C., Im, J., Motz, C., Kiener, D., Karnthaler, H.-P., and Dehm, G.: Dislocation plasticity of Al film on polyimide investigated by cross-sectional in situ transmission electron microscopy straining. Scr. Mater. 65, 456 (2011).
80.Kiener, D., Zhang, Z., Sturm, S., Cazottes, S., Imrich, P.J., Kirchlechner, C., and Dehm, G.: Advanced nanomechanics in the TEM: Effects of thermal annealing on FIB-prepared Cu samples. Philos. Mag. A, iFirst (2012).
81.Moser, G., Felber, H., Rashkova, B., Imrich, P.J., Kirchlechner, C., Grosinger, W., Motz, C., Dehm, G., and Kiener, D.: Sample preparation by metallography and focused ion beam for nanomechanical testing. Pract. Metall. 49, 343 (2012).


Application of small-scale testing for investigation of ion-beam-irradiated materials

  • Daniel Kiener (a1), Andrew M. Minor (a2), Osman Anderoglu (a3), Yongqiang Wang (a3), Stuart A. Maloy (a3) and Peter Hosemann (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed