Skip to main content Accessibility help
×
Home

Anomalous size effects in nanoporous materials induced by high surface energies

  • Justin W. Wilkerson (a1)

Abstract

Several experiments and molecular dynamics calculations have reported anomalous mechanical behaviors of nanoporous materials that may be attributed to capillary effects. For example, nanoporous gold exhibits a tension–compression asymmetry in yield strength with the material being stronger in compression than tension. In addition, some molecular dynamics calculations have reported a spontaneous collapse of pores in nanoporous gold with nanometer-sized ligaments. Despite these perplexing observations, there are few theoretical models capable of shedding light on such capillary phenomena, particularly under general stress states. Here, we utilize a physics-based model to explore the implications of high surface energies on the mechanical response of dislocation-starved nanoporous materials subject to general stress states. For low stress triaxialities, we report an anomalous size effect and an anomalous temperature-dependence of dislocation-starved nanoporous materials with sufficiently large surface energies. Additionally, we provide an analytic criterion for spontaneous pore collapse in nanoporous materials with nanometer-sized ligaments.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: wilkerson@tamu.edu

References

Hide All
1.Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., and Abraham, F.F.: Size effects on the mechanical behavior of nanoporous au. Nano Lett. 6, 23792382 (2006).
2.Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron au columns. Philos. Mag. 86, 55675579 (2006).
3.Hodge, A., Biener, J., Hayes, J., Bythrow, P., Volkert, C., and Hamza, A.: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 13431349 (2007).
4.Ashby, M.F. and Gibson, L.J.: Cellular Solids: Structure and Properties (Press Syndicate of the University of Cambridge, Cambridge, U.K., 1997); p. 183e231.
5.Volkert, C., Lilleodden, E., Kramer, D., and Weissmüller, J.: Approaching the theoretical strength in nanoporous au. Appl. Phys. Lett. 89, 061920 (2006).
6.Briot, N.J., Kennerknecht, T., Eberl, C., and Balk, T.J.: Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing. Philos. Mag. 94, 847866 (2014).
7.Dou, R. and Derby, B.: Deformation mechanisms in gold nanowires and nanoporous gold. Philos. Mag. 91, 10701083 (2011).
8.Dou, R. and Derby, B.: A universal scaling law for the strength of metal micropillars and nanowires. Scr. Mater. 61, 524527 (2009).
9.El-Awady, J.A.: Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6, 5926 (2015).
10.McCue, I., Benn, E., Gaskey, B., and Erlebacher, J.: Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263286 (2016).
11.Jin, H-J., Kurmanaeva, L., Schmauch, J., Rösner, H., Ivanisenko, Y., and Weissmüller, J.: Deforming nanoporous metal: Role of lattice coherency. Acta Mater. 57, 26652672 (2009).
12.Liu, R. and Antoniou, A.: A relationship between the geometrical structure of a nanoporous metal foam and its modulus. Acta Mater. 61, 23902402 (2013).
13.Wang, K., Hartig, C., Blankenburg, M., Müller, M., Günther, R., and Weissmüller, J.: Local flow stresses in interpenetrating-phase composites based on nanoporous gold—In situ diffraction. Scr. Mater. 127, 151155 (2017).
14.Jin, H-J., Weissmüller, J., and Farkas, D.: Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts. MRS Bull. 43, 3542 (2018).
15.Huber, N., Viswanath, R., Mameka, N., Markmann, J., and Weißmüller, J.: Scaling laws of nanoporous metals under uniaxial compression. Acta Mater. 67, 252265 (2014).
16.Briot, N.J. and Balk, T.J.: Developing scaling relations for the yield strength of nanoporous gold. Philos. Mag. 95, 29552973 (2015).
17.Mangipudi, K., Epler, E., and Volkert, C.: Topology-dependent scaling laws for the stiffness and strength of nanoporous gold. Acta Mater. 119, 115122 (2016).
18.Roschning, B. and Huber, N.: Scaling laws of nanoporous gold under uniaxial compression: Effects of structural disorder on the solid fraction, elastic Poisson’s ratio, Young’s modulus and yield strength. J. Mech. Phys. Solids 92, 5571 (2016).
19.Reina, C., Marian, J., and Ortiz, M.: Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals. Phys. Rev. B 84, 104117 (2011).
20.Wilkerson, J.: On the micromechanics of void dynamics at extreme rates. Int. J. Plast. 95, 2142 (2017).
21.Lubarda, V., Schneider, M., Kalantar, D., Remington, B., and Meyers, M.: Void growth by dislocation emission. Acta Mater. 52, 13971408 (2004).
22.Belak, J.: On the nucleation and growth of voids at high strain-rates. J. Comput.-Aided Mater. Des. 5, 193206 (1998).
23.Rudd, R.E. and Belak, J.F.: Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper: An atomistic simulation. Comput. Mater. Sci. 24, 148153 (2002).
24.Seppälä, E., Belak, J., and Rudd, R.: Effect of stress triaxiality on void growth in dynamic fracture of metals: A molecular dynamics study. Phys. Rev. B 69, 134101 (2004).
25.Traiviratana, S., Bringa, E.M., Benson, D.J., and Meyers, M.A.: Void growth in metals: Atomistic calculations. Acta Mater. 56, 38743886 (2008).
26.Meyers, M.A., Traiviratana, S., Lubarda, V., Benson, D.J., and Bringa, E.M.: The role of dislocations in the growth of nanosized voids in ductile failure of metals. JOM 61, 3541 (2009).
27.Bringa, E.M., Traiviratana, S., and Meyers, M.A.: Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects. Acta Mater. 58, 44584477 (2010).
28.Tang, Y., Bringa, E.M., Remington, B.A., and Meyers, M.A.: Growth and collapse of nanovoids in tantalum monocrystals. Acta Mater. 59, 13541372 (2011).
29.Ariza, M., Romero, I., Ponga, M., and Ortiz, M.: HotQC simulation of nanovoid growth under tension in copper. Int. J. Fract. 174, 7585 (2012).
30.Lubarda, V.A.: Emission of dislocations from nanovoids under combined loading. Int. J. Plast. 27, 181200 (2011).
31.Wilkerson, J. and Ramesh, K.: A closed-form criterion for dislocation emission in nano-porous materials under arbitrary thermomechanical loading. J. Mech. Phys. Solids 86, 94116 (2016).
32.Ye, X-L. and Jin, H-J.: Electrochemical control of creep in nanoporous gold. Appl. Phys. Lett. 103, 201912 (2013).
33.Lührs, L., Zandersons, B., Huber, N., and Weissmüller, J.: Plastic Poisson’s ratio of nanoporous metals: A macroscopic signature of tension–compression asymmetry at the nanoscale. Nano Lett. 17, 62586266 (2017).
34.Mameka, N., Markmann, J., and Weissmüller, J.: On the impact of capillarity for strength at the nanoscale. Nat. Commun. 8, 1976 (2017).
35.Farkas, D., Caro, A., Bringa, E., and Crowson, D.: Mechanical response of nanoporous gold. Acta Mater. 61, 32493256 (2013).
36.Crowson, D.A., Farkas, D., and Corcoran, S.G.: Geometric relaxation of nanoporous metals: The role of surface relaxation. Scr. Mater. 56, 919922 (2007).
37.Ngô, B-N.D., Stukowski, A., Mameka, N., Markmann, J., Albe, K., and Weissmüller, J.: Anomalous compliance and early yielding of nanoporous gold. Acta Mater. 93, 144155 (2015).
38.Weinberger, C.R. and Cai, W.: Plasticity of metal nanowires. J. Mater. Chem. 22, 32773292 (2012).
39.Diao, J., Gall, K., and Dunn, M.L.: Yield strength asymmetry in metal nanowires. Nano Lett. 4, 18631867 (2004).
40.Diao, J., Gall, K., Dunn, M.L., and Zimmerman, J.A.: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54, 643653 (2006).
41.Peng, J., Jing, F., Li, D., and Wang, L.: Pressure and temperature dependence of shear modulus and yield strength for aluminum, copper, and tungsten under shock compression. J. Appl. Phys. 98, 013508 (2005).
42.Wilkerson, J.: Multiscale mechanics of failure in extreme environments. Ph.D. thesis, Johns Hopkins University, Baltimore, MD, 2014.
43.Vitos, L., Ruban, A., Skriver, H.L., and Kollar, J.: The surface energy of metals. Surf. Sci. 411, 186202 (1998).
44.Zhao, K., Fan, L., and Chen, C.: Multiaxial behavior of nanoporous single crystal copper: A molecular dynamics study. Acta Mech. Solida Sin. 22, 650656 (2009).
45.Iskandarov, A.M., Dmitriev, S.V., and Umeno, Y.: Temperature effect on ideal shear strength of Al and Cu. Phys. Rev. B 84, 224118 (2011).
46.Udin, H., Shaler, A., and Wulff, J.: The surface tension of solid copper. JOM 1, 186190 (1949).
47.Buttner, F., Udin, H., and Wulff, J.: Surface tension of solid gold. JOM 3, 12091211 (1951).
48.Diao, J., Gall, K., and Dunn, M.L.: Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656 (2003).
49.Liang, W., Zhou, M., and Ke, F.: Shape memory effect in cu nanowires. Nano Lett. 5, 20392043 (2005).
50.Crowson, D.A., Farkas, D., and Corcoran, S.G.: Mechanical stability of nanoporous metals with small ligament sizes. Scr. Mater. 61, 497499 (2009).
51.Parida, S., Kramer, D., Volkert, C., Rösner, H., Erlebacher, J., and Weissmüller, J.: Volume change during the formation of nanoporous gold by dealloying. Phys. Rev. Lett. 97, 035504 (2006).
52.Rice, J.R. and Thomson, R.: Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 7397 (1974).
53.Dundurs, J. and Mura, T.: Interaction between an edge dislocation and a circular inclusion. J. Mech. Phys. Solids 12, 177189 (1964).
54.Lubarda, V.A.: Image force on a straight dislocation emitted from a cylindrical void. Int. J. Solids Struct. 48, 648660 (2011).

Keywords

Anomalous size effects in nanoporous materials induced by high surface energies

  • Justin W. Wilkerson (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed