Skip to main content Accessibility help
×
Home

Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity

  • Yan Liu (a1), Dong Su (a1), Yanzong Zhang (a1), Lilin Wang (a1), Gang Yang (a1), Fei Shen (a1), Shihuai Deng (a1), Xiaohong Zhang (a1) and Shirong Zhang (a1)...

Abstract

TiO2 nanotubes have been demonstrated with promising future in photoelectrocatalytic (PEC)_ applications and deposition of Pt nanoparticles on TiO2 has been widely used to enhance their PEC activities. However, those Pt nanoparticles are normally randomly deposited on the surface of TiO2 nanotubes. Selective deposition of Pt nanoparticles is important to achieve better charge separation. In this study, we reported an electrochemical activation step to prepare TiO2 nanotubes deposited with Pt nanoparticles on their open ends. The “activation step” played a key role in achieving a clean surface of the TiO2 nanotubes, thus ensuring the uniform growth of Pt nanoparticles and efficient photogenerated electrons transportation. The Pt-A-TiO2 films have photocatalytic activities in hydrogen generation and methyl orange degradation with a high hydrogen generation rate of 0.74 mL/h/cm2, three times that of the pure TiO2 nanotubes (0.24 mL/h/cm2). Thus, this study demonstrated an effective method for improving the performance of Pt/TiO2 photocatalyst.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: yzzhang@sicau.edu.cn

Footnotes

Hide All
Contributing Editor: Xiaobo Chen

Footnotes

References

Hide All
1. Liu, G., Yang, H.G., Pan, J., Yang, Y.Q., Lu, G.Q., and Cheng, H.M.: Titanium dioxide crystals with tailored facets. Chem. Rev. 114(19), 9559 (2014).
2. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D.W.: Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 114(19), 9919 (2014).
3. Liu, L. and Chen, X.: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114(19), 9890 (2014).
4. Chen, X., Liu, L., and Huang, F.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44(7), 1861 (2015).
5. Sinhamahapatra, A., Jeon, J.P., and Yu, J.S.: A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 8(12), 3539 (2015).
6. Dahl, M., Liu, Y., and Yin, Y.: Composite titanium dioxide nanomaterials. Chem. Rev. 114(19), 9853 (2014).
7. Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C.: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114(19), 9987 (2014).
8. Lee, K., Mazare, A., and Schmuki, P.: One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 114(19), 9385 (2014).
9. Shin, S.W., Lee, J.Y., Ahn, K.S., Kang, S.H., and Kim, J.H.: Visible light absorbing TiO2 nanotube arrays by sulfur treatment for photoelectrochemical water splitting. J. Phys. Chem. C 119(24), 13375 (2015).
10. Xue, Y., Sun, Y., Wang, G., Yan, K., and Zhao, J.: Effect of NH4F concentration and controlled-charge consumption on the photocatalytic hydrogen generation of TiO2 nanotube arrays. Electrochim. Acta 155(10), 312 (2015).
11. Subramanian, V.R., Sarker, S., Yu, B., Kar, A., Sun, X., and Dey, S.K.: TiO2 nanotubes and its composites: Photocatalytic and other photo-driven applications. J. Mater. Res. 28(3), 280 (2013).
12. Xiao, F.X., Hung, S.F., Miao, J., Wang, H.Y., Yang, H., and Liu, B.: Metal-cluster-decorated TiO2 nanotube arrays: A composite heterostructure toward versatile photocatalytic and photoelectrochemical applications. Small 11(5), 554 (2015).
13. Macak, J.M., Zlamal, M., Krysa, J., and Schmuki, P.: Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3(2), 300 (2007).
14. Chiarello, G.L., Zuliani, A., Ceresoli, D., Martinazzo, R., and Selli, E.: Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production. ACS Catal. 6(2), 1345 (2016).
15. Regonini, D., Groff, A., Sorarù, G.D., and Clemens, F.J.: Photoelectrochemical study of anodized TiO2 nanotubes prepared using low and high H2O contents. Electrochim. Acta 186(20), 101 (2015).
16. Wang, D., Yu, B., Wang, C., Zhou, F., and Liu, W.: A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv. Mater. 21(19), 1964 (2009).
17. Wang, D., Liu, Y., Yu, B., Zhou, F., and Liu, W.: TiO2 nanotubes with tunable morphology, diameter, and length: Synthesis and photo-electrical/catalytic performance. Chem. Mater. 21(7), 1198 (2009).
18. Ghicov, A. and Schmuki, P.: Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MO x structures. Chem. Commun. 2009, 2791 (2009).
19. Wang, J. and Lin, Z.: Anodic formation of ordered TiO2 nanotube arrays: Effects of electrolyte temperature and anodization potential. J. Phys. Chem. C 113(10), 4026 (2009).
20. Qi, L., Yin, Z., Zhang, S., Ouyang, Q., Li, C., and Chen, Y.: The increased interface charge transfer in dye-sensitized solar cells based on well-ordered TiO2 nanotube arrays with different lengths. J. Mater. Res. 29(6), 745 (2014).
21. Karthik, S., Gopal, K.M., Haripriya, E.P., Sorachon, Y., Maggie, P., Oomman, K.V., and Craig, A.G.: Highly-ordered TiO2 nanotube arrays up to 220 µm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18(6), 065707 (2007).
22. Paulose, M., Shankar, K., Yoriya, S., Prakasam, H.E., Varghese, O.K., Mor, G.K., Latempa, T.A., Fitzgerald, A., and Grimes, C.A.: Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J. Phys. Chem. B 110(33), 16179 (2006).
23. Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A., and Grimes, C.A.: TiO2 nanotube arrays of 1000 μm length by anodization of titanium Foil: Phenol red diffusion. J. Phys. Chem. C 111(41), 14992 (2007).
24. Albu, S.P., Ghicov, A., Macak, J.M., and Schmuki, P.: 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Status Solidi RRL 1(2), R65 (2007).
25. Roy, P., Berger, S., and Schmuki, P.: TiO2 nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 50(13), 2904 (2011).
26. Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891 (2007).
27. Luan, X., Guan, D., and Wang, Y.: Facile synthesis and morphology control of bamboo-type TiO2 nanotube arrays for high-efficiency dye-sensitized solar cells. J. Phys. Chem. C 116(27), 14257 (2012).
28. Nishanthi, S.T., Sundarakannan, B., Subramanian, E., and Pathinettam Padiyan, D.: Enhancement in hydrogen generation using bamboo like TiO2 nanotubes fabricated by a modified two-step anodization technique. Renewable Energy 77, 300 (2015).
29. Chen, B. and Lu, K.: Hierarchically branched titania nanotubes with tailored diameters and branch numbers. Langmuir 28(5), 2937 (2012).
30. Guan, D. and Wang, Y.: Synthesis and growth mechanism of multilayer TiO2 nanotube arrays. Nanoscale 4(9), 2968 (2012).
31. Li, H., Zheng, L., Shu, S., Cheng, H., and Li, Y.Y.: Morphology control of anodic TiO2 nanomaterials via cold work pretreatment of Ti foils. J. Electrochem. Soc. 158(10), C346 (2011).
32. Kim, D., Ghicov, A., Albu, S.P., and Schmuki, P.: Bamboo-type TiO2 Nanotubes: Improved conversion efficiency in dye-sensitized solar cells. J. Am. Chem. Soc. 130(49), 16454 (2008).
33. Albu, S.P., Kim, D., and Schmuki, P.: Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew. Chem. 120(10), 1942 (2008).
34. Li, H., Cheng, J.W., Shu, S., Zhang, J., Zheng, L., Tsang, C.K., Cheng, H., Liang, F., Lee, S.T., and Li, Y.Y.: Selective removal of the outer shells of anodic TiO2 nanotubes. Small 9(1), 37 (2013).
35. Kim, J.Y., Zhu, K., Neale, N.R., and Frank, A.J.: Transparent TiO2 nanotube array photoelectrodes prepared via two-step anodization. Nano Convergence 1(1), 1 (2014).
36. Momeni, M.M. and Hosseini, M.G.: Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anodization and treated under UV light irradiation. Nanochem. Res. 1(1), 9 (2016).
37. Wu, H., Li, D., Zhu, X., Yang, C., Liu, D., Chen, X., Song, Y., and Lu, L.: High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116(10), 129 (2014).
38. Yu, D., Zhu, X., Xu, Z., Zhong, X., Gui, Q., Song, Y., Zhang, S., Chen, X., and Li, D.: Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS Appl. Mater. Interfaces 6(11), 8001 (2014).
39. Nguyen, N.T., Altomare, M., Yoo, J.E., Taccardi, N., and Schmuki, P.: Noble metals on anodic TiO2 nanotube mouths: Thermal dewetting of minimal Pt Co-catalyst loading leads to significantly enhanced photocatalytic H2 generation. Adv. Energy Mater. 6(2), 1501926 (2016).
40. Bumajdad, A. and Madkour, M.: Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Phys. Chem. Chem. Phy. 16(16), 7146 (2014).
41. Nguyen, N.T., Altomare, M., Yoo, J., and Schmuki, P.: Efficient photocatalytic H2 evolution: Controlled dewetting–dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO2 nanotube arrays. Adv. Mater. 27(20), 3208 (2015).
42. Su, R., Tiruvalam, R., Logsdail, A.J., He, Q., Downing, C.A., Jensen, M.T., Dimitratos, N., Kesavan, L., Wells, P.P., Bechstein, R., Jensen, H.H., Wendt, S., Catlow, C.R.A., Kiely, C.J., Hutchings, G.J., and Besenbacher, F.: Designer titania-supported Au–Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8(4), 3490 (2014).
43. Nguyen, N.T., Yoo, J., Altomare, M., and Schmuki, P.: “Suspended” Pt nanoparticles over TiO2 nanotubes for enhanced photocatalytic H2 evolution. Chem. Commun. 50(68), 9653 (2014).
44. Yan, Y., Chen, T., Zou, Y., and Wang, Y.: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31(10), 1383 (2016).
45. Li, S., Tao, Q., Li, D., and Zhang, Q.: Controlled anisotropic growth of Ag nanoparticles on oil-decorated TiO2 films with photocatalytic reduction method. J. Mater. Res. 29(21), 2497 (2014).
46. Antony, R.P., Mathews, T., Ramesh, C., Murugesan, N., Dasgupta, A., Dhara, S., Dash, S., and Tyagi, A.: Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization. Int. J. Hydrogen Energy 37(10), 8268 (2012).
47. Lai, Y., Gong, J., and Lin, C.: Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting. Int. J. Hydrogen Energy 37(8), 6438 (2012).
48. Liu, Y., Mu, K., Yang, G., Peng, H., Shen, F., Wang, L., Deng, S., Zhang, X., and Zhang, Y.: Fabrication of a coral/double-wall TiO2 nanotube array film electrode with higher photoelectrocatalytic activity under sunlight. New J. Chem. 39(5), 3923 (2015).
49. Altomare, M., Pozzi, M., Allieta, M., Bettini, L.G., and Selli, E.: H2 and O2 photocatalytic production on TiO2 nanotube arrays: Effect of the anodization time on structural features and photoactivity. Appl. Catal., B 136–137(5), 81 (2013).
50. Li, H., Chen, Z., Tsang, C.K., Li, Z., Ran, X., Lee, C., Nie, B., Zheng, L., Hung, T., Lu, J., Pan, B., and Li, Y.Y.: Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J. Mater. Chem. A 2(1), 229 (2014).
51. Chen, X., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746 (2011).
52. Xia, T., Li, N., Zhang, Y., Kruger, M.B., Murowchick, J., Selloni, A., and Chen, X.: Directional heat dissipation across the interface in anatase-rutile nanocomposites. ACS Appl. Mater. Interfaces 5(20), 9883 (2013).
53. Zhang, Y., Harris, C.X., Wallenmeyer, P., Murowchick, J., and Chen, X.: Asymmetric lattice vibrational characteristics of rutile TiO2 as revealed by laser power dependent Raman spectroscopy. J. Phys. Chem. C 117(45), 24015 (2013).
54. Mun, K.S., Alvarez, S.D., Choi, W.Y., and Sailor, M.J.: A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano. 4(4), 2070 (2010).
55. Liang, F., Kelly, T.L., Luo, L-b., Li, H., Sailor, M.J., and Li, Y.Y.: Self-cleaning organic vapor sensor based on a nanoporous TiO2 interferometer. ACS Appl. Mater. Interfaces 4(8), 4177 (2012).
56. Zheng, L., Cheng, H., Liang, F., Shu, S., Tsang, C.K., Li, H., Lee, S-T., and Li, Y.Y.: Porous TiO2 photonic band gap materials by anodization. J. Phys. Chem. C 116(9), 5509 (2012).
57. Yu, J., Qi, L., and Jaroniec, M.: Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 114(30), 13118 (2010).
58. Zhang, F., Chen, J., Zhang, X., Gao, W., Jin, R., Guan, N., and Li, Y.: Synthesis of titania-supported platinum catalyst: The effect of pH on morphology control and valence state during photodeposition. Langmuir 20(21), 9329 (2004).
59. Chen, X. and Burda, C.: The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130(15), 5018 (2008).
60. Romero-Gómez, P., Rico, V., Borrás, A., Barranco, A., Espinós, J.P., Cotrino, J., and González-Elipe, A.R.: Chemical state of nitrogen and visible surface and Schottky barrier driven photoactivities of N-doped TiO2 thin films. J. Phys. Chem. C 113(30), 13341 (2009).
61. Ismail, A.A. and Bahnemann, D.W.: Mesostructured Pt/TiO2 nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid. J. Phys. Chem. C 115(13), 5784 (2011).

Keywords

Type Description Title
WORD
Supplementary materials

Liu supplementary material
Liu supplementary material

 Word (1.3 MB)
1.3 MB

Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity

  • Yan Liu (a1), Dong Su (a1), Yanzong Zhang (a1), Lilin Wang (a1), Gang Yang (a1), Fei Shen (a1), Shihuai Deng (a1), Xiaohong Zhang (a1) and Shirong Zhang (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed