Skip to main content Accessibility help

Annealing-induced lattice recovery in room-temperature xenon irradiated CeO2: X-ray diffraction and electron energy loss spectroscopy experiments

  • Janne Pakarinen (a1), Lingfeng He (a2), Abdel-Rahman Hassan (a3), Yongqiang Wang (a4), Mahima Gupta (a5), Anter El-Azab (a6) and Todd R. Allen (a7)...


A systematic x-ray diffraction (XRD) study was performed on room-temperature Xe-irradiated and postirradiation annealed CeO2. Large scale XRD did not show any additional irradiation-induced phases upon irradiation. Depth profiling the CeO2 (111) diffraction peak over the 150 nm deep Xe-irradiated layer (400 keV, 1 × 1020 Xe/m2) by grazing incidence XRD indicated a lattice expansion at the irradiated layer. Postirradiation annealing (1 h at 1000 °C) in an oxygen-containing environment removed the observed XRD features. Electron energy loss spectroscopy (EELS) was performed for cross-sectional samples before and after postirradiation annealing. EELS showed that the Ce charge state changed from +4 to +3 at the CeO2 surface indicating the presence of O vacancies in both as-irradiated and annealed samples. EELS also indicated that the amount of O vacancies was reduced at the irradiated region by annealing. The experimental results are discussed based on electronic properties of CeO2, annihilation of oxygen vacancies, and evolution of irradiation damage.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Khalid Hattar



Hide All
1. Ronchi, C., Sheindlin, M., Staicu, D., and Kinoshita, M.: Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWd t−1 . J. Nucl. Mater. 327, 58 (2004).
2. Yin, Q. and Savrasov, S.: Origin of low thermal conductivity in nuclear fuels. Phys. Rev. Lett. 100, 225504 (2008).
3. Deng, B., Chernatynskiy, A., Shukla, P., Sinnott, S., and Phillpot, S.: Effects of edge dislocations on thermal transport in UO2 . J. Nucl. Mater. 434, 203 (2013).
4. Noirot, J., Desgranges, L., and Lamontagne, J.: Detailed characterisations of high burn-up structures in UO2 . J. Nucl. Mater. 372, 318 (2008).
5. Aidhy, D.S., Wolf, D., and El-Azab, A.: Comparison of point-defect clustering in irradiated CeO2 and UO2: A unified view from molecular dynamics simulations and experiments. Scr. Mater. 65, 867 (2011).
6. Edmondson, P.D., Zhang, Y., Moll, S., Varga, T., Namavar, F., and Weber, W.J.: Anomalous grain growth in the surface region of a nanocrystalline CeO2 film under low-temperature heavy ion irradiation. Phys. Rev. B 85, 214113 (2012).
7. Shimizu, K., Kosugi, S., Tahara, Y., Yasunaga, K., Kaneta, Y., Ishikawa, N., Hori, F., Matsui, T., and Iwase, A.: Change in magnetic properties induced by swift heavy ion irradiation in CeO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 286, 291 (2012).
8. Chen, M.Y., Zu, X.T., Xiang, X., and Zhang, H.: Effects of ion irradiation and annealing on optical and structural properties of CeO2 films on sapphire. Phys. B 389, 263 (2007).
9. Ishikawa, N., Chimi, Y., Michikami, O., Ohta, Y., Ohhara, K., Lang, M., and Neumann, R.: Study of structural change in CeO2 irradiated with high-energy ions by means of X-ray diffraction measurement. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 3033 (2008).
10. Weber, W.J.: Alpha-irradiation damage in CeO2, UO2, and PuO2 . Radiat. Eff. 83, 145 (1984).
11. Schwab, R.G., Steiner, R.A., Mages, G., and Beie, H-J.: Properties of CeO2 and CeO2−x films Part II. High temperature properties. Thin Solid Films 207, 288 (1992).
12. Borodin, V.A., Ryazanov, A.I., and Sherstennikov, D.G.: Low-temperature swelling of metals and ceramics. J. Nucl. Mater. 202, 169 (1993).
13. Ziegler, J.F.: SRIM-2003. Nucl. Instrum. Methods Phys. Res., Sect. B 219220, 1027 (2004).
14. Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., and Garner, F.A.: On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res., Sect. B 310, 75 (2013).
15. Guinebretiere, R.: X-ray Diffraction by Polycrystalline Materials (ISTE Ltd., London, UK, 2007).
16. Hubblell, J. and Seltzer, S.: Tables of X-Ray mass attenuation coefficients and mass energy-absorption coefficients (version 1.4). Available at (accessed March 5, 2013). National Institute of Standards and Technology, Gaithersburg, MD, (2013).
17. Wojdyr, M.: Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126 (2010).
18. Skorodumova, N.V., Simak, S.I., Lundqvist, B.I., Abrikosov, I.A., and Johansson, B.: Quantum origin of the oxygen storage capability of ceria. Phys. Rev. Lett. 89, 166601 (2002).
19. Hojo, H., Mizoguchi, T., Ohta, H., and Yamamoto, T.: Atomic structure of CeO2 grain boundary: The role of oxygen vacancies. Nano Lett. 10, 4668 (2010).
20. Sattonnay, G., Garrido, F., and Thome, L.: Behavior of helium in UO2 single crystals, a transmission electron microscopy investigation. Philos. Mag. Lett. 84, 109 (2004).
21. Ohno, H., Iwase, A., Matsumura, D., Nishihata, Y., Mizuki, J., Ishikawa, N., Baba, Y., Hirao, N., Sonoda, T., and Kinoshita, M.: Study on effects of swift heavy ion irradiation in cerium dioxide using synchrotron radiation X-ray absorption spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 3013 (2008).
22. Willis, J.R., Bitllough, R., and Stoneham, A.M.: The effect of dislocation loops on the lattice parameter, determined by X-ray diffraction. Philos. Mag. A 48, 95 (1983).
23. Sattonnay, G., Vincent, L., Garrido, F., and Thome, L.: Xenon versus helium behavior in UO2 single crystals: A TEM investigation. J. Nucl. Mater. 355, 131 (2006).
24. He, L.F., Gupta, M., Yablinsky, C.A., Gan, J., Kirk, M.A., Bai, X-A., Pakarinen, J., and Allen, T.R.: In situ TEM observation of dislocation evolution in Kr-irradiated UO2 single crystal. J. Nucl. Mater. 443, 71 (2013).
25. Sabathier, C., Vincent, L., Garcia, P., Garrido, F., Carlot, G., Thome, L., Martin, P., and Valota, C.: In situ TEM study of temperature-induced fission product precipitation in UO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 266, 3027 (2008).
26. Fortner, J. and Buck, E.: The chemistry of the light rare-earth elements as determined by electron energy loss spectroscopy. Appl. Phys. Lett. 68, 38173819 (1996).
27. Garvie, L.A.J. and Buseck, P.R.: Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J. Phys. Chem. Solids 60, 1943 (1999).
28. Hassan, A-R., El-Azab, A., Yablinsky, C., and Allen, T.: Defect disorder in UO2 . J. Solid State Chem. 204, 136 (2013).
29. Zinkevich, M., Djurovic, D., and Aldinger, F.: Thermodynamic modelling of the cerium-oxygen system. Solid State Ionics 177, 989 (2006).
30. Zacherle, T., Schriever, A., De Souza, R.A., and Martin, M.: Ab initio analysis of the defect structure in ceria. Phys. B 87, 134104 (2013).
31. DeSouza, R.A.: The formation of equilibrium space-charge zones at grain boundaries in perovskite oxide SrTiO3 . Phys. Chem. Chem. Phys. 11, 9939 (2009).
32. Morrison, S.: The Chemical Physics of Surfaces (Plenum Press, New York, NY, 1977).
33. Sheldon, B.W. and Shenoy, V.B.: Space charge induced surface stresses: Implication in ceria and other ionic solids. Phys. Rev. Lett. 106, 216104 (2011).
34. McEachern, R.J. and Taylor, P.: A review of the oxidation of uranium dioxide at temperatures below 400 °C. J. Nucl. Mater. 254, 87 (1998).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed