Skip to main content Accessibility help

An indentation method for evaluation of residual stress: ESTIMATION of stress-free indentation curve using stress-independent indentation parameters

  • Jong-hyoung Kim (a1), Sungki Choi (a1), Junsang Lee (a1), Hee-Jun Ahn (a2), Young-Cheon Kim (a3), Min-Jae Choi (a4) and Dongil Kwon (a1)...


Residual stress is generally evaluated using indentation by comparing the indentation curves of stressed and stress-free states. Here, we suggest a new method that can evaluate surface residual stress without indentation testing on stress-free specimen using stress-independent indentation parameters and an analysis of indentation contact morphology for the stress-free state. We found that several indentation parameters are independent of the stress by Vickers indentation testing on various stress states. The indentation contact morphology can be represented by indentation parameters including stress-independent ones, and by applying the stress-independent parameters obtained from the stressed state to the indentation contact depth function, we can estimate an indentation curve for stress-free state. The estimated curve matches well with the experimental stress-free indentation curve, and it was also confirmed that the applied stress values evaluated by comparing the estimated curve with the stressed indentation curve agree well with the reference values obtained from strain gauge.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Tsui, T.Y., Oliver, W.C., and Pharr, G.M.: Influences of stress on the measurement of mechanical properties using nanoindentation. 1. Experimental studies in an aluminum alloy. J. Mater. Res. 11, 752 (1996).
2.Bolshakov, A., Oliver, W.C., and Pharr, G.M.: Influences of stress on the measurement of mechanical properties using nanoindentation. 2. Finite element simulations. J. Mater. Res. 11, 760 (1996).10.1557/JMR.1996.0092
3.Suresh, S. and Giannakopoulos, A.E.: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46, 5755 (1998).10.1016/S1359-6454(98)00226-2
4.Carlsson, S. and Larsson, P.L.: On the determination of residual stress and strain fields by sharp indentation testing.: Part I: Theoretical and numerical analysis. Acta Mater. 49, 2179 (2001).10.1016/S1359-6454(01)00122-7
5.Carlsson, S. and Larsson, P.L.: On the determination of residual stress and strain fields by sharp indentation testing.: Part II: Experimental investigation. Acta Mater. 49, 2193 (2001).10.1016/S1359-6454(01)00123-9
6.Lee, Y-H. and Kwon, D.: Estimation of biaxial surface stress by instrumented indentation with sharp indenters. Acta Mater. 52, 1555 (2004).10.1016/j.actamat.2003.12.006
7.Kang, S-K., Kim, J-Y., Park, C-P., Kim, H-U., and Kwon, D.: Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests. J. Mater. Res. 25, 337 (2010).10.1557/JMR.2010.0045
8.Kang, S-K., Kim, J-H., Lee, Y-H., Kim, J-Y., and Kwon, D.: Correlation between the plastic strain and the plastic pileup of the instrumented indentation by utilizing the interrupted tensile test. Mater. Sci. Eng., A 535, 197 (2012).10.1016/j.msea.2011.12.063
9.Lu, Z., Feng, Y., Peng, G., Yang, R., Huan, Y., and Zhang, T.: Estimation of surface equi-biaxial residual stress by using instrumented sharp indentation. Mater. Sci. Eng., A 614, 264 (2014).10.1016/j.msea.2014.07.041
10.Attaf, M.T.: Connection between the loading curve models in elastoplastic indentation. Mater. Lett. 58, 3491 (2004).10.1016/j.matlet.2004.06.049
11.Voyiadjis George, Z. and Almasri Amin, H.: Variable material length scale associated with nanoindentation experiments. J. Eng. Mech. 135, 139 (2009).10.1061/(ASCE)0733-9399(2009)135:3(139)
12.Broitman, E.: Indentation hardness measurements at macro-, micro-, and nanoscale: A critical overview. Tribol. Lett. 65, 23 (2016).10.1007/s11249-016-0805-5
13.Akatsu, T., Numata, S., Shinoda, Y., and Wakai, F.: Effect of the elastic deformation of a point-sharp indenter on nanoindentation behavior. Materials 10, 270 (2017).10.3390/ma10030270
14.Stilwell, N.A. and Tabor, D.: Elastic recovery of conical indentations. Proc. Phys. Soc. 78, 169 (1961).10.1088/0370-1328/78/2/302
15.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).10.1557/JMR.1992.1564
16.Giannakopoulos, A.E., Larsson, P.L., and Vestergaard, R.: Analysis of Vickers indentation. Int. J. Solids Struct. 31, 2679 (1994).10.1016/0020-7683(94)90225-9
17.Bolshakov, A. and Pharr, G.M.: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13, 1049 (1998).10.1557/JMR.1998.0146
18.Lee, Y-H., Takashima, K., Higo, Y., and Kwon, D.: Prediction of stress directionality from pile-up morphology around remnant indentation. Scr. Mater. 51, 887 (2004).10.1016/j.scriptamat.2004.06.034
19.Ling, L., Long, S., Ma, Z., and Liang, X.: Numerical study on the effects of equi-biaxial residual stress on mechanical properties of nickel film by means of nanoindentation. J. Mater. Sci. Technol. 26, 1001 (2010).10.1016/S1005-0302(10)60164-8
20.Kang, S-K., Kim, Y-C., Lee, J-W., Kwon, D., and Kim, J-Y.: Effect of contact angle on contact morphology and Vickers hardness measurement in instrumented indentation testing. Int. J. Mech. Sci. 85, 104 (2014).10.1016/j.ijmecsci.2014.05.002
21.ASTM E2546-15: Standard Practice for Instrumented Indentation Testing (ASTM International, West Conshohocken, Pennsylvania, 2015).
22.Xiao, L., Ye, D., and Chen, C.: A further study on representative models for calculating the residual stress based on the instrumented indentation technique. Comput. Mater. Sci. 82, 476 (2014).10.1016/j.commatsci.2013.10.014
23.Lee, Y.H., Ji, W.j., and Kwon, D.: Stress measurement of SS400 steel beam using the continuous indentation technique. Exp. Mech. 44, 55 (2004).10.1007/BF02427977
24.Alcalá, J., Barone, A.C., and Anglada, M.: The influence of plastic hardening on surface deformation modes around Vickers and spherical indents. Acta Mater. 48, 3451 (2000).10.1016/S1359-6454(00)00140-3



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed