Skip to main content Accessibility help
×
Home

An experimental and theoretical study of the optical, electronic, and magnetic properties of novel inverted α-Cr2O3@α-Mn0.35Cr1.65O2.94 core shell nanoparticles

  • Mohammad D. Hossain (a1), Robert A. Mayanovic (a1), Ridwan Sakidja (a1) and Mourad Benamara (a2)

Abstract

Magnetic core–shell nanoparticles (CSNs) have potential applications in spintronic devices, drug delivery systems, and magnetic random access memory. By use of our hydrothermal nano-phase epitaxy method, we have accomplished synthesis of novel, well-ordered α-Cr2O3@α-Mn0.35Cr1.65O2.94 inverted CSNs. XRD and TEM analyses show a core–shell structure with corundum phase throughout the core and shell with a minimal amount of interface defects. TEM-EDX and XPS data show Mn having the +2 oxidation state in the shell of the CSNs. Magnetization measurements at 5 K show a weak coercivity (H C) value of 8 Oe and an exchange bias field (H E) of 293 Oe. Ab initio calculations show that Mn incorporation in α-Cr2O3 results in narrowing of the energy band gap, substantiated by UV–Vis measurements, and half metallic behavior in case of Mn(III) substitution. Our calculations substantiate that Mn substitution in α-Cr2O3 results in a combination of antiferromagnetic and weak ferrimagnetic character of our CSNs.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: robertmayanovic@missouristate.edu

References

Hide All
1. Song, S., Wang, X., and Zhang, H.: CeO2-encapsulated noble metal nanocatalysts: Enhanced activity and stability for catalytic application. NPG Asia Mater. 7(5), e179 (2015).
2. Gawande, M.B., Goswami, A., Asefa, T., Guo, H., Biradar, A.V., Peng, D-L., Zboril, R., and Varma, R.S.: Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44(21), 7540 (2015).
3. Byers, C.P., Zhang, H., Swearer, D.F., Yorulmaz, M., Hoener, B.S., Huang, D., Hoggard, A., Chang, W-S., Mulvaney, P., Ringe, E., Halas, N.J., Nordlander, P., Link, S., and Landes, C.F.: From tunable core–shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. Sci. Adv. 1(11), e1500988 (2015).
4. Borys, N.J., Walter, M.J., Huang, J., Talapin, D.V., and Lupton, J.M.: The role of particle morphology in interfacial energy transfer in CdSe/CdS heterostructure nanocrystals. Science 330(6009), 1371 (2010).
5. Liu, L., Qi, Y., Hu, J., Liang, Y., and Cui, W.: Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra. Appl. Surf. Sci. 351, 1146 (2015).
6. Dong, W., Pan, F., Xu, L., Zheng, M., Sow, C.H., Wu, K., Xu, G.Q., and Chen, W.: Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation. Appl. Surf. Sci. 349, 279 (2015).
7. Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., and Nogués, J.: Beating the superparamagnetic limit with exchange bias. Nature 423(6942), 850 (2003).
8. Evans, R.F.L., Yanes, R., Mryasov, O., Chantrell, R.W., and Chubykalo-Fesenko, O.: On beating the superparamagnetic limit with exchange bias. EPL Europhys. Lett. 88(5), 57004 (2009).
9. Nogués, J., Sort, J., Langlais, V., Skumryev, V., Suriñach, S., Muñoz, J.S., and Baró, M.D.: Exchange bias in nanostructures. Phys. Rep. 422, 65 (2005).
10. Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K., Hyeon, T., Agarwal, N., Smith, D.J., and Fullerton, E.E.: Antiferromagnetic MnO nanoparticles with ferrimagnetic Mn3O4 shells: Doubly inverted core–shell system. Phys. Rev. B: Condens. Matter Mater. Phys. 77(2), 024403 (2008).
11. Li, W., Zhao, R., Wang, L., Tang, R., Zhu, Y., Lee, J.H., Cao, H., Cai, T., Guo, H., Wang, C., Ling, L., Pi, L., Jin, K., Zhang, Y., Wang, H., Wang, Y., Ju, S., and Yang, H.: Oxygen-vacancy-induced antiferromagnetism to ferromagnetism transformation in Eu0.5Ba0.5TiO3−δ multiferroic thin films. Sci. Rep. 3, 2618 (2013).
12. Juhin, A., López-Ortega, A., Sikora, M., Carvallo, C., Estrader, M., Estradé, S., Peiró, F., Baró, M.D., Sainctavit, P., Glatzel, P., and Nogués, J.: Direct evidence for an interdiffused intermediate layer in bi-magnetic core–shell nanoparticles. Nanoscale 6(20), 11911 (2014).
13. Evans, R.F.L., Bate, D., Chantrell, R.W., Yanes, R., and Chubykalo-Fesenko, O.: Influence of interfacial roughness on exchange bias in core–shell nanoparticles. Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 092404 (2011).
14. Dey, S., Hossain, M.D., Mayanovic, R.A., Wirth, R., and Gordon, R.A.: Novel highly-ordered core-shell nanoparticles. J. Mater. Sci 52(4), 2066 (2016).
15. Jamtveit, B.: Geosystems in Growth Dissolution Pattern Form, Jamtveit, B. and Meakin, P., eds. (Springer, Netherlands, 1999); pp. 6584.
16. Farzaneh, F.: Synthesis and characterization of Cr2O3 nanoparticles with triethanolamine in water under microwave irradiation. J. Sci., Islamic Repub. Iran 22(4), 329 (2011).
17. Hossain, M.D., Dey, S., Mayanovic, R.A., and Benamara, M.: Structural and magnetic properties of well-ordered inverted core-shell α-Cr2O3/α-M x Cr2−x O3 (M = Co, Ni, Mn, Fe) nanoparticles. MRS Adv. 1, 2387 (2016).
18. TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual (Bruker AXS, Karlsruhe, 2008).
19. Dinnebier, R. and Müller, M.: In Mod. Diffr. Methods, Mittemeijer, E.J. and Welzel, U., eds. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012); pp. 2760.
20. Liechtenstein, A.I., Anisimov, V.I., and Zaanen, J.: Density-functional theory and strong interactions: Orbital ordering in Mott–Hubbard insulators. Phys. Rev. B: Condens. Matter Mater. Phys. 52(8), R5467 (1995).
21. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M.: Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009).
22. Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter Mater. Phys. 13(12), 5188 (1976).
23. Shi, S., Wysocki, A.L., and Belashchenko, K.D.: Magnetism of chromia from first-principles calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 79(10), 104404 (2009).
24. Perdew, J.P. and Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B: Condens. Matter Mater. Phys. 23(10), 5048 (1981).
25. Yang, J.: Structural analysis of perovskite LaCr1−x Ni x O3 by Rietveld refinement of X-ray powder diffraction data. Acta Crystallogr., Sect. B 64(Pt 3), 281 (2008).
26. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32(5), 751 (1976).
27. Swaminathan, R., Willard, M.A., and McHenry, M.E.: Experimental observations and nucleation and growth theory of polyhedral magnetic ferrite nanoparticles synthesized using an RF plasma torch. Acta Mater. 54(3), 807 (2006).
28. Swaminathan, R., McHenry, M.E., Poddar, P., and Srikanth, H.: Magnetic properties of polydisperse and monodisperse NiZn ferrite nanoparticles interpreted in a surface structure model. J. Appl. Phys. 97(10), 10G104 (2005).
29. Punugupati, S., Narayan, J., and Hunte, F.: Strain induced ferromagnetism in epitaxial Cr2O3 thin films integrated on Si(001). Appl. Phys. Lett. 105(13), 132401 (2014).
30. Yang, G., Gao, D., Zhang, J., Zhang, J., Shi, Z., and Xue, D.: Evidence of vacancy-induced room temperature ferromagnetism in amorphous and crystalline Al2O3 nanoparticles. J. Phys. Chem. C 115(34), 16814 (2011).
31. An, Y., Ren, Y., Yang, D., Wu, Z., and Liu, J.: Oxygen vacancy-induced room temperature ferromagnetism and magnetoresistance in Fe-doped In2O3 films. J. Phys. Chem. C 119(8), 4414 (2015).
32. Niu, G., Hildebrandt, E., Schubert, M.A., Boscherini, F., Zoellner, M.H., Alff, L., Walczyk, D., Zaumseil, P., Costina, I., Wilkens, H., and Schroeder, T.: Oxygen vacancy induced room temperature ferromagnetism in Pr-doped CeO2 thin films on silicon. ACS Appl. Mater. Interfaces 6(20), 17496 (2014).
33. Cao, H., Qiu, X., Liang, Y., Zhao, M., and Zhu, Q.: Sol–gel synthesis and photoluminescence of p-type semiconductor Cr2O3 nanowires. Appl. Phys. Lett. 88(24), 241112 (2006).
34. Julkarnain, M., Hossain, J., Sharif, K.S., and Khan, K.A.: Optical properties of thermally evaporated Cr2O3 thin films. Research Gate 3(4), 81 (2012).
35. Abdullah, M.M., Rajab, F.M., and Al-Abbas, S.M.: Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties. AIP Adv. 4(2), 027121 (2014).
36. Corliss, L.M., Hastings, J.M., Nathans, R., and Shirane, G.: Magnetic structure of Cr2O3 . J. Appl. Phys. 36(3), 1099 (1965).
37. Julien, C.M., Ait-Salah, A., Mauger, A., and Gendron, F.: Magnetic properties of lithium intercalation compounds. Ionics 12(1), 21 (2006).
38. Goldenberg, N.: Magnetism and valency: Manganese compounds. Trans. Faraday Soc. 36(0), 847 (1940).
39. Contreras-García, J., Pendás, Á.M., Silvi, B., and Manuel Recio, J.: Useful applications of the electron localization function in high-pressure crystal chemistry. J. Phys. Chem. Solids 69(9), 2204 (2008).
40. Silvi, B. and Savin, A.: Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371(6499), 683 (1994).
41. Becke, A.D. and Edgecombe, K.E.: A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92(9), 5397 (1990).
42. Hossain, M.D., Sakidja, R., and Mayanovic, R.A.: Electronic and magnetic properties of Ni-Substituted α-Cr2O3 from first principles calculations (2016). Under submission.
43. Shinde, V.R., Gujar, T.P., Lokhande, C.D., Mane, R.S., and Han, S-H.: Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Mater. Chem. Phys. 96(2–3), 326 (2006).
44. Yang, S. and Zhang, Y.: Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol–gel method. J. Magn. Magn. Mater. 334, 52 (2013).
45. Kim, K.J. and Park, Y.R.: Spectroscopic ellipsometry study of optical transitions in Zn1−x Co x O alloys. Appl. Phys. Lett. 81(8), 1420 (2002).
46. Lee, Y.R., Ramdas, A.K., and Aggarwal, R.L.: Energy gap, excitonic, and “internal” Mn2+ optical transition in Mn-based II–VI diluted magnetic semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 38(15), 10600 (1988).
47. Diouri, J., Lascaray, J.P., and Amrani, M.E.: Effect of the magnetic order on the optical-absorption edge in Cd1−x Mn x Te. Phys. Rev. B: Condens. Matter Mater. Phys. 31(12), 7995 (1985).
48. Wang, Q., Sun, Q., Rao, B.K., and Jena, P.: Magnetism and energetics of Mn-doped ZnO ( $10\bar 10$ ) thin films. Phys. Rev. B: Condens. Matter Mater. Phys. 69(23), 233310 (2004).
49. Bououdina, M., Omri, K., El-Hilo, M., El Amiri, A., Lemine, O.M., Alyamani, A., Hlil, E.K., Lassri, H., and El Mir, L.: Structural and magnetic properties of Mn-doped ZnO nanocrystals. Phys. E 56, 107 (2014).
50. Karmakar, R., Neogi, S.K., Banerjee, A., and Bandyopadhyay, S.: Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film. Appl. Surf. Sci. 263, 671 (2012).
51. Choudhury, B. and Choudhury, A.: Oxygen vacancy and dopant concentration dependent magnetic properties of Mn doped TiO2 nanoparticle. Curr. Appl. Phys. 13(6), 1025 (2013).

Keywords

Type Description Title
WORD
Supplementary materials

Hossain supplementary material
Hossain supplementary material 1

 Word (4.3 MB)
4.3 MB

An experimental and theoretical study of the optical, electronic, and magnetic properties of novel inverted α-Cr2O3@α-Mn0.35Cr1.65O2.94 core shell nanoparticles

  • Mohammad D. Hossain (a1), Robert A. Mayanovic (a1), Ridwan Sakidja (a1) and Mourad Benamara (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed