Skip to main content Accessibility help

An energy-based method for analyzing instrumented spherical indentation experiments

  • Wangyang Ni (a1), Yang-Tse Cheng (a2), Che-Min Cheng (a3) and David S. Grummon (a4)


Using dimensional analysis and finite element calculation, we studied spherical indentation in elastic–plastic solids with work hardening. We report two previously unknown relationships between hardness, reduced modulus, indentation depth, indenter radius, and work of indentation. These relationships, together with the relationship between initial unloading stiffness and reduced modulus, provide an energy-based method for determining contact area, reduced modulus, and hardness of materials from instrumented spherical indentation measurements. This method also provides a means for calibrating the effective radius of imperfectly shaped spherical indenters. Finally, the method is applied to the analysis of instrumented spherical indentation experiments on copper, aluminum, tungsten, and fused silica.



Hide All
1.E10-01 Standard Test Method for BRINELL Hardness of Metallic Materials (ASTM International, West Conshohocken, 2003).
2.Tabor, D., The Hardness of Metals (Oxford University Press, London, U.K., 1951); Philosophical Magazine A 74 1207 (1996).
3.Mott, B.W., Micro-indentation Hardness Testing (Butterworths, London, U.K., 1956).
4.Fischer-Cripps, A.C., Nanoindentation (Springer-Verlag, New York, 2002).
5.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).
6.Field, J.S. and Swain, M.V., J. Mater. Res. 8, 297 1993; J. Mater. Res. 10 101 (1995).
7.Haggag, F.M. and Lucas, G.E., Metall. Trans. 14A, 1607 (1983).
8.Taljat, B., Zacharia, T. and Haggaga, F.M., J. Mater. Res. 12, 965 (1997).
9.Huber, N. and Tsakmakis, C., J. Mech. Phys. Solids 47, 1569 , 1589 (1999).
10.Alcalá, J., Giannakopoulos, A.E., and Suresh, S., J. Mater. Res. 13, 1390 (1998).
11.Kucharski, S. and Mróz, Z., J. Eng. Mater. Technol. 123 235 (2001).
12.Herbert, G., Pharr, G.M., Oliver, W.C., Lucas, B.N. and Hay, J.L., Thin Solid Films 398–399 331 (2001).
13.Norbury, A.L. and Samuel, T., J. Iron Steel Inst. 117 673 (1928).
14.Chaudhri, M.M. and Winter, M., J. Phys. D.: Appl. Phys. 21 370 (1988).
15.Cheng, Y-T. and Cheng, C-M., Philos. Mag. Lett. 78 115 (1998).
16.Bolshakov, A. and Pharr, G.M., J. Mater. Res. 13 1049 (1998).
17.Cheng, Y-T. and Cheng, C-M., J. Appl. Phys. 84 1284 (1998).
18.Cheng, Y-T., Li, Z. and Cheng, C-M., Philos. Mag. 82 1821 (2002).
19.Barenblatt, G.I., Scaling, Self-similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996).
20.Ni, W., Cheng, Y-T., Cheng, C-M. and Grummon, D.S., GM Research Publication R&D-9522 (April 23, 2003).
21.Cheng, Y-T. and Cheng, C-M., J. Mater. Res. 14 3493 1999.
22.Cheng, Y-T. and Cheng, C-M., Appl. Phys. Lett. 73 614 (1998).
23.Giannakopoulos, A.E. and Suresh, S., Scr. Mater. 40 1191 (1999).
24.Cheng, C-M. and Cheng, Y-T., Appl. Phys. Lett. 71 2623 (1997).
25.Gschneidner, K.A., Solid State Physics 16 275 (1964).
26.Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (The M.I.T. Press, Cambridge, MA, 1971).
27. General Electric Fused Quartz Products Technical Data, general catalog number 7705-7725 (April 1985).
28.Hay, J.C., Bolshakov, A. and Pharr, G.M., J. Mater. Res. 14 2296 (1999).
29.Poole, W.J., Ashby, M.F. and Fleck, N.A., Scr. Mater. 34 559 (1996).
30.McElhaney, K.W., Vlassak, J.J. and Nix, W.D., J. Mater. Res. 13 1300 (1998).
31.Gerberich, W.W., Tymiak, N.I., Grunlan, J.C., Horstemeryer, M.F. and Baskes, M.I., ASME J. Appl. Mech. 69 433 (2002).
32.Nix, W.D. and Gao, H., J. Mech. Phys. Solids 46 411 (1998).
33.Swadener, J.G., George, E.P. and Pharr, G.M., J. Mech. Phys. Solids 50 681 (2002).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed