Skip to main content Accessibility help
×
Home

An analysis of high temperature (1150 °C) furnace annealing of buried oxide wafers formed by ion implantation

  • S. R. Wilson (a1), M. E. Burnham (a1), M. Kottke (a1), R. P. Lorigan (a1), S. J. Krause (a2), C. O. Jung (a2), J. A. Leavitt (a3), L. C. McIntyre (a3), J. Seerveld (a3) and P. Stoss (a3)...

Abstract

Silicon-on-insulator films were formed by ion implantation of oxygen and were treated with various annealing cycles at peak temperatures of 1150 °C, 1200 °C, and 1250 °C in a conventional diffusion furnace. The objective of this study was to examine the structural effects on samples with similar oxygen diffusion lengths (from 17 to 33 μm) achieved by annealing at different times and temperatures. The oxygen and silicon distributions, as well as the residual damage and precipitate size and distribution, were measured by Auger electron microscopy, Rutherford backscattering spectroscopy, and transmission electron microscopy. In agreement with previous findings, higher temperatures produced a larger and less defective, “precipitate-free” superficial Si region. The buried oxide layer thickened from 0.33 μm to a maximum of 0.43 μm as some precipitates were incorporated into the buried oxide while others adjacent to the buried oxide grew in size (up to 47 nm) and decreased in relative number. A new result of this systematic study of annealing conditions was that the peak temperature has a greater effect on the morphology and crystal quality of the superficial Si structure than does time at temperature. Structural changes for longer anneals at 1150 °C are not equivalent to shorter anneals at 1250 °C even though the diffusion length of oxygen for these treatments is the same.

Copyright

References

Hide All
1Lam, H. W., Tasch, A. F., and Pinnizzotto, R. J., “Silicon on Insulator for VLSI and VHSIC,” in VLSI Electronics Microstructure Science, edited by Einspruch, Norman G. (Academic Press, New York, 1982), Vol. 4, p. 1.
2Burnham, M.E. and Wilson, S. R., Proc. Soc. Photo-Opt. Instrum. Eng.-Int. Soc. Opt. Eng. 530, 240 (1985).
3Izumi, K., Omura, Y., and Nakashima, S., Energy Beam Solid Interactions and Transient Thermal Processing, edited by Fan, John C.C. and Johnson, Noble M. (Elsevier North Holland, New York, 1984) p. 443.
4Nesbit, L., Slusser, G., Frennette, R., and Halbach, R., J. Electrochem. Soc. 133, 1186 (1986).
5Hemment, P. L. F., Peart, R. F., Yao, M. F., Stephens, K. G., Arrowsmith, R. P., Chater, R.J., and Kilner, J. A., Nucl. Instrum. Methods B6, 292 (1985).
6Marsh, C.D., Booker, G. R., Reeson, K.J., Hemment, P. L. F., Chater, R.J., Alderman, J. A., and Celler, G., Eur. Mat. Res. Soc. Symp. Proc. R 12, 137 (1987).
7Hemment, P.L.F., Reeson, K.J., Kilner, J.A., Chater, R.J., Marsh, C., Booker, G. R., Celler, G. K., and Stoemenos, J., Vacuum 36, 877 (1986).
8Hemment, P. L. F., Semiconductor-on-Insulator and Thin Film Transistor Technology, edited by Chiang, A., Geis, M. W., and Pfeiffer, L. (Materials Research Society, Pittsburgh, PA, 1986), p. 207.
9Tuppen, C. G., Taylor, M. R., Hemment, P. L. F., and Arrowsmith, R. P., Appl. Phys. Lett. 45, 57 (1985).
10Wilson, S.R. and Fathy, D., J. Electron. Mater. 13, 127 (1984).
11Holland, O.W., Fathy, D., Narayan, J., Sjoreen, T.P., and Wilson, S.R., J. Non-Crystalline Sol. 71, 163 (1985).
12Krause, S. J., Jung, C. O., and Wilson, S. R., Proc. of the Fifth International Symposium on Silicon Materials Science and Technology–Semiconductor Silicon 1986, edited by Huff, Howard R. and Abe, Takao (Electrochemical Society, Kennington, NJ, 1986), p. 642.
13Pinizzotto, Russell F., Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R., and White, C. W. (Elsevier North Holland, New York, 1984), p. 265.
14Mogro-Campero, A., Love, R. P., Lewis, N., Hall, E. L., and McConnell, M.D., Ion Beam Processes in Advanced Electron Materials and Device Technology, edited by Eisen, F. H., Sigmon, T. W., and Appleton, B.R. (Materials Research Society, Pittsburgh, PA, 1985), p. 305.
15Pinizzotto, R.F., Vaandrager, B.L., Matteson, S., Lam, H. W., Mahli, S.D. S., Hamdi, A. H., and McDaniel, F. D., IEEE Trans, on Nucl. Sci. NS30, 1722 (1983).
16Tuppen, C. G., Taylor, M. R., Hemment, P. L. F., and Arrowsmith, R. P., Thin Solid Films 131, 233 (1985).
17Celler, G.K., Hemment, P. L. F., West, K. W., and Gibson, J. M., Appl. Phys. Lett. 48, 532 (1986).
18Mao, B.-Y., Chang, P.-H., Lam, H. W., Shen, B.W., and Keenan, J.A., Appl. Phys. Lett. 48, 794 (1986).
19Jaussaud, C., Stoemenos, J., and Margail, J., Appl. Phys. Lett. 46, 1064 (1985).
20Mogro-Campero, A., Love, R. P., Leis, N., Hall, E. L., and McConnell, M.D., J. Appl. Phys. 60, 2103 (1986).
21Stoemenos, J., Jaussaud, C., Bruel, M., and Margail, J., J. Cryst. Growth 73, 546 (1985).
22Bruel, M., Margail, J., Stoemenos, J., Martin, P., and Jaussaud, C., Vacuum 35, 589 (1985).
23Batstone, J. L., White, A.E., Short, K.T., Gibson, J. M., and Jacobson, D.C., Proc. Mat. Res. Soc. 74, 597 (1987).
24Parry, P.D., J. Vac. Sci. Technol. 13, 622 (1975).
25Parry, P. D., J. Vac. Sci. Technol. 15, 111 (1978).
26Tuppen, C. G., Davies, G. J., Taylor, M. R., and Heckingbottom, R., Thin Films and Interfaces II, edited by Baglin, J. E. E., Campbell, D. R., and Chu, W. K. (Elsevier North Holland, New York, 1984), p. 537.
27Reeson, K.J., Nucl. Inst. Meths. B19/20, 269 (1987).
28Chater, R.J., Kilner, J.A., Hemment, P. L.F., Reeson, K.J., and Peart, R.F., Proc. Electro. Chem. Soc. 84-4, 652 (1986).
29Nakashima, S., Akiya, M., and Kato, K., Elec. Lett. 19, 568 (1983).
30Krause, S.J., Jung, C. O., Wilson, S.R., Burnham, M. E., and Lorigan, R. P., Semiconductor-on-Insulator and Thin Film Transistor Technology, edited by Chiang, A., Geis, M. W., and Pfeiffer, L. (Materials Research Society, Pittsburgh, PA, 1986), p. 257.
31Kennedy, E. F., Csepregi, L., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4241 (1977).
32Craven, Robert, Proc. of the Fourth International Symposium on Silicon Materials Science and Technology–Semiconductor Silicon 1981, edited by Huff, Howard R. and Kreigler, Rudolph J. (Electrochemical Society, Pennington, NJ), p. 254.
33Wada, Kazumi and Inoue, Naohisa, J. Crystal Growth 49, 749 (1980).
34Newman, R.C., Binns, M. J., Brown, W. P., Livingston, F. M., Messoloras, S., Stewart, R. J., and Wilkes, J. G., Physica 116B, 264 (1983).
35Tiller, W. A., Hahn, S., and Ponce, F., J. Appl. Phys. 59, 3255 (1986).
36Maillet, S., Stuck, R., and Grab, J.J., Nucl. Inst. Meths. B19/20, 294 (1987).
37White, A. E., Short, K. T., Batstone, J. L., Jacobson, D. C., Poate, J. M., and West, K. W., Appl. Phys. Lett. 50, 19 (1987).

An analysis of high temperature (1150 °C) furnace annealing of buried oxide wafers formed by ion implantation

  • S. R. Wilson (a1), M. E. Burnham (a1), M. Kottke (a1), R. P. Lorigan (a1), S. J. Krause (a2), C. O. Jung (a2), J. A. Leavitt (a3), L. C. McIntyre (a3), J. Seerveld (a3) and P. Stoss (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed