Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T14:11:02.475Z Has data issue: false hasContentIssue false

Amorphous lead iron tungstate prepared by twin-roller quenching

Published online by Cambridge University Press:  31 January 2011

N. K. Kim
Affiliation:
Department of Inorganic Materials Engineering, Kyungpook National University, Taegu, Korea
D. A. Payne
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana–Champaign. Urbana, Illinois 61801
Get access

Abstract

Amorphous lead iron tungstate was prepared from the melt by twin-roller quenching. The rapidly solidified material was characterized in terms of density, x-ray diffraction, differential thermal analysis, and electrical properties. Results are given for the amorphous-crystalline transformation.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Turnbull, D., Contemp. Phys. 10 (5), 473 (1969).CrossRefGoogle Scholar
2Nassau, K., J. Non-Cryst. Solids 42 (1–3), 423 (1980).CrossRefGoogle Scholar
3Nassau, K., Wang, C. A., and Grasso, M., J. Am. Ceram. Soc. 62 (9–10), 508 (1979).Google Scholar
4Glass, A. M., Lines, M. E., Nassau, K., and Shiever, J. W., Appl. Phys. Lett. 31 (4), 249 (1977).CrossRefGoogle Scholar
5Tatsumisago, M., Sakono, I., Minami, T., and Tanaka, M., J. Mater. Sci. 17 (12), 3593 (1982).Google Scholar
6Gyorgy, E. M., Nassau, K., Eibschultz, M., Waszczak, J. V., Wong, C. A., and Shelton, J. C., J. Appl. Phys. 50 (4), 2883 (1979).Google Scholar
7Torii, Y. (private communication, 1985).Google Scholar
8Suzuki, T. and Ukawa, S., J. Mater. Sci. 18 (6), 1845 (1983).Google Scholar
9Smolenskii, G. A., Agranovskoya, A. I., and Isupov, V. A., Sov. Phys.-Solid State 1 (86), 907 (1959).Google Scholar
10Takamizawa, H., Utsumi, K., Yonezawa, M., and Ohno, T., IEEE Trans. CHMT, CHMT 4 (4), 345 (1981).Google Scholar
11Yonezawa, H., Am. Ceram. Soc. Bull. 62 (12), 1375 (1983).Google Scholar
12Chen, H. S. and Miller, C. E., Rev. Sci. Instr. 41 (8), 1237 (1970).Google Scholar
13Kim, N. K., Ph. D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL (1988).Google Scholar
14Smolenskii, G. A. and Bokov, V. A., J. Appl. Phys. 35 (3), 915 (1964).CrossRefGoogle Scholar
15Bokov, V. A. and Myl'nikova, I. E., Sov. Phys.-Solid State 3 (3), 61 (1961).Google Scholar
16Smolensky, G., Ferroelectrics 53 (1–4), 129 (1984).CrossRefGoogle Scholar
17Uchino, K. and Nomura, S., Jpn. J. Appl. Phys. 18 (8), 1493 (1979).Google Scholar