Skip to main content Accessibility help

Amorphization of Cristobalite at High Temperature in Vacuum

  • Chang-Ming Xu (a1), S.W. Wang (a2), X.X. Huang (a2) and J.K. Guo (a2)


Amorphous transition behavior of silica polymorphs under high pressure has been extensively studied by using diamond-anvil cells or shock wave technologies at ambient temperature. Here, we report the amorphization of crystalline silica fiber in cristobalite polymorph in the temperature range of 1050–1350 °C without pressure applied in vacuum. X-ray diffraction, infrared spectra, and Raman spectra illustrated the transition. Raman spectra revealed that no significant changes had happened to the SiO4 unit during the transition. It is suggested that the driven-off of interstitial oxygen attributed to the transition and the reaction between the diffusing hydrogen and interstitial oxygen promoted the process.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Williams, Q. and Jeanloz, R.: Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science 239, 902 (1988).
2Hemley, R.J., Prewitt, C.T. and Kingma, K.J.: High-pressure behavior of silica. Rev. Miner. 29, 41 (1994).
3Gratz, A.J., Deloach, L.D., Clough, T.M. and Nellis, W.J.: Shock amorphization of cristobalite. Science 259, 663 (1993).
4Hemley, R.J., Mao, H.K., Bell, P.M. and Mysen, B.O.: Raman spectroscopy of SiO2 glass at high pressure. Phys. Rev. Lett. 69, 747 (1986).
5Roberts, M.M., Wienhoff, J.R., Grant, K. and Lacks, D.: Structural transformation in silica glass under high pressure. J. Non-Cryst. Solids 281, 205 (2001).
6Dove, M.T., Tucker, M., Redfern, S., Trachenko, K., Marshall, W. and Keen, D. High-pressure studies of cristobalite. ISIS Annual Report 2000, (Appleton Laboratory, Rutherford, U.K.) pp 32, 33.
7Prakapenka, V.P., Shen, G., Dubrovinsky, L.S., Rivers, M.L. and Sutton, S.R.: High pressure induced phase transformation of SiO2 and GeO2: Difference and similarity. J. Phys. Chem. Solids 65, 1537 (2005).
8Yamashita, H., Kawasaki, S., Ichihashi, Y., Harada, M., Taeuchi, M., Anpo, M., Stewart, G., Fox, M.A., Louis, C. and Che, M.: Characterization of titanium-silicon binary oxide catalysts prepared by the sol-gel method and their photocatalystic reactivity for the liquid-phase oxidation of 1-octanol. J. Phys. Chem. B 102, 5870 (1998).
9Hartwig, C.M. and Rahn, L.A.: Bound hydroxyl in vitreous silica. J. Chem. Phys. 67, 4260 (1977).
10Davis, R.J. and Liu, Z.: Titania-silica: A model binary oxide catalyst system. Chem. Mater. 9, 2311 (1997).
11McMillans, P.F. and Wolf, G.H.: Vibration spectroscopy of silicate liquids. Rev. Miner. 32, 217 (1995).
12Chen, H., Ji, S., Niu, J., Xie, B. and Li, S.: Vibration spectroscopy on transformation of amorphous silica to cristobalite. Acta Phys. Chim. Sinica 15, 454 (1999).
13Rubio, F., Rubio, J. and Oteo, J.L.: A DSC study of the drying process of TEOS derived wet silica gels. Thermochim. Acta 307, 51 (1997).
14Liang, Y.J. and Che, M.C.: Handbook of Inorganic Thermodynamic Data (Northeastern University Press, Shenyang, People’s Republic of China, 1993), in Chinese.
15Wagstaff, F.E., Brown, S.D. and Cutler, I.B.: The influence of H2O and O2 atmospheres on the crystallization of vitreous silica. Phys. Chem. Glasses 5, 76 (1964).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed