Skip to main content Accessibility help

Amino-substituted binuclear phthalocyanines bonding with multi-wall carbon nanotube as efficient electrocatalysts for lithium-thionyl chloride battery

  • Yan Gao (a1), Liangting Chen (a1), Guangfa Hu (a2), Xiao Wang (a1), Gai Zhang (a3), Ying Zheng (a4) and Jianshe Zhao (a1)...


In this work, carbon nanotubes (CNTs)-templated binuclear metallophthalocyanines (MTAPcCF3)2C (M = Mn, Fe, Co, Ni, Cu, Zn) assemblies (MTAPcCF3)2C–COOH–CNTs are designed and obtained. Whereafter, the structure and morphology of target products are analyzed by many means such as infrared, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The electrocatalytic performances of lithium-thionyl chloride battery catalyzed by (MTAPcCF3)2C–COOH–CNTs were carried out. The result shows that all catalysts can improve the battery performance including the discharge time and the initial voltage. The catalytic performance of (MTAPcCF3)2C–COOH–CNTs is ordered following the central metal: Mn > Fe > Ni > Co > Cu > Zn. The cell capacity catalyzed by optimal catalyst (MnTAPcCF3)2C–COOH–CNTs can expand to 28.08 mAˑh, with increase by 142.07%, and the (MnTAPcCF3)2C–COOH–CNTs can extend the discharge time to 551.6 s. Besides, the reaction mechanism is presented on the basis of cyclic voltammetry measurements.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Gangadharan, R., Namboodiri, P.N.N., Prasad, K.V., and Viswanathan, R.: The lithium—Thionyl chloride battery—A review. J. Power Sources 4, 1 (1979).
2.Jain, M., Nagasubramanian, G., Jungst, R.G., and Weidner, J.W.: Analysis of a lithium/thionyl chloride battery under moderate-rate discharge. J. Electrochem. Soc. 146, 4023 (1999).
3.Li, B., Yuan, Z., Xu, Y., and Liu, J.: N-doped graphene as an efficient electrocatalyst for lithium-thionyl chloride batteries. Appl. Catal., A 523, 241 (2016).
4.Li, N., Dang, C., Sun, W.J., and Li, J.: The synthesis of porphyrin and metalporphyrins and their improvement to the property of Li/SOCl2 primary battery. Russ. J. Electrochem. 52, 94 (2016).
5.Xu, Z., Zhao, J., Li, H., Li, K., Cao, Z., and Lu, J.: Influence of the electronic configuration of the central metal ions on catalytic activity of metal phthalocyanines to Li/SOCl2 batter. J. Power Sources 194, 1081 (2009).
6.Holmes, C.F.: The role of lithium batteries in modern health care. J. Power Sources 97, 739 (2001).
7.Iwamaru, T. and Uetani, Y.: Characteristics of a lithium-thionyl chloride battery as a memory back-up power source. J. Power Sources 20, 47 (1987).
8.Yan, X.D., Wang, Z.H., He, M., Hou, Z.H., Xia, T., Liu, G., and Chen, X.B.: TiO2 nanomaterials as anode materials for lithium-ion rechargeable batteries. Energy Technol. 3, 801 (2015).
9.He, M., Wang, Z.H., Yan, X.D., Tian, L.H., Liu, G., and Chen, X.B.: Hydrogenation effects on the lithium ion battery performance of TiOF2. J. Power Sources 306, 309 (2016).
10.Liu, J.Q., Zhuang, Q.C., Shi, Y.L., Yan, X.D., Zhao, X., and Chen, X.B.: Tertiary butyl hydroquinone as a novel additive for SEI film formation in lithium-ion batteries. RSC Adv. 6, 42885 (2016).
11.Shi, Y.L., Sun, S.B., Liu, J.J., Cui, Y.L., Zhuang, Q.C., and Chen, X.B.: Enhanced charge storage of Li3FeF6 with carbon nanotubes for lithium-ion batteries. RSC Adv. 6, 113283 (2016).
12.Wang, L.Y., Zhuo, L.H., and Zhao, F.Y.: Carbon dioxide-expanded ethanol-assisted synthesis of carbon-based metal composites and their catalytic and electrochemical performance in lithium-ion batteries. Chin. J. Catal. 37, 218 (2016).
13.Jing, M.J., Zhou, M.J., Li, G.Y., Chen, Z.G., Xu, W.Y., Chen, X.B., and Hou, Z.H.: Graphene-embedded Co3O4 rose-spheres for enhanced performance in lithium ion batteries. ACS Appl. Mater. Interfaces 9, 9662 (2017).
14.Bernstein, P.A. and Lever, A.B.P.: Two-electron oxidation of cobalt phthalocyanines by thionyl chloride. Implications for lithium/thionyl chloride batteries. Inorg. Chem. 29, 608 (1990).
15.Li, X., Huang, X., Gao, R., Zhang, R., and Zhao, J.: Improved performance of Li/SOCl2 batteries using binuclear metal azaphthalocyanines as electrocatalysts. Electrochim. Acta 222, 203 (2016).
16.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
17.Gottschalk, F., Sonderer, T., Scholz, R.W., and Nowack, B.: Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43, 9216 (2009).
18.Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M., and Lanka, S.: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 70, 2237 (2010).
19.Timur, S., Anik, U., Odaci, D., and Gorton, L.: Development of a microbial biosensor based on carbon nanotube (CNT) modified electrode. Electrochem. Commun. 9, 1810 (2007).
20.Ren, J., Li, L., Chen, C., Chen, X., Cai, Z., Qiu, L., and Peng, H.: Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25, 1155 (2013).
21.Lee, S.W., Yabuuchi, N., Gallant, B.M., Chen, S., Kim, B.S., Hammond, P.T., and Shao-Horn, Y.: High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 5, 531 (2010).
22.Sakamoto, J.S. and Dunn, B.: Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries. J. Electrochem. Soc. 149, A26 (2002).
23.Tsaur, K.‐C. and Pollard, R.: Mathematical modeling of the lithium, thionyl chloride static cell I. Neutral electrolyte. J. Electrochem. Soc. 131, 975 (1984).
24.Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P., and Herrmann, I.: Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 7, 1405 (2005).
25.Bao, Z., Lovinger, A.J., and Dodabalapur, A.: Organic field‐effect transistors with high mobility based on copper phthalocyanine. Appl. Phys. Lett. 69, 3066 (1996).
26.Abraham, K.M. and Jiang, Z.: A polymer electrolyte‐based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1 (1996).
27.Wang, F., Wu, F., and Yang, K.: Effect of phthalocyanine compounds on the performance of MH/Ni battery. Acta Phys.-Chim. Sin. 19, 854 (2003).
28.Chamberlain, G.A. and Cooney, P.: J Photoelectric properties of aluminium/copper phthalocyanine/gold photovoltaic cells. Chem. Phys. Lett. 66, 88 (1979).
29.Özen, Ü.E., Doğan, E., Özer, M., Bekaroğlu, Ö., and Özkaya, A.R.: Communication—High-performance and non-precious bifunctional oxygen electrocatalysis with binuclear ball-type phthalocyanine based complexes for zinc-air batteries. J. Electrochem. Soc. 163, A2001 (2016).
30.Wang, Y., Chen, J., Jiang, C., Ding, N., Wang, C., Li, D., and Zhong, S.: Tetra-β-nitro-substituted phthalocyanines: A new organic electrode material for lithium batteries. J. Solid State Electrochem. 21, 947 (2017).
31.Zhang, R., Wang, J., Xu, B., Huang, X., Xu, Z., and Zhao, J.: Catalytic activity of binuclear transition metal phthalocyanines in electrolyte operation of lithium/thionyl chloride battery. J. Electrochem. Soc. 159, H704 (2012).
32.Liu, Z., Jiang, Q., Zhang, R., Gao, R., and Zhao, J.: J. Graphene/phthalocyanine composites and binuclear metal phthalocyanines with excellent electrocatalytic performance to Li/SOCl2 battery. Electrochim. Acta 187, 81 (2016).
33.Gao, Y., Li, S., Wang, X., Zhang, R., Zhang, G., Zheng, Y., and Zhao, J.: J. Carbon nanotubes chemically modified by metal phthalocyanines with excellent electrocatalytic activity to Li/SOCl2 battery. J. Electrochem. Soc. 164, A1140 (2017).
34.Xu, Z., Zhang, G., Cao, Z., Zhao, J., and Li, H.: Effect of N atoms in the backbone of metal phthalocyanine derivatives on their catalytic activity to lithium battery. J. Mol. Catal. A: Chem. 318, 101 (2010).
35.Snow, A.W., Griffith, J.R., and Marullo, N.P.: Syntheses and characterization of heteroatom-bridged metal-free phthalocyanine network polymers and model compounds. Macromolecules 17, 1614 (1984).
36.Rajmohan, K.S. and Chetty, R.: Enhanced nitrate reduction with copper phthalocyanine-coated carbon nanotubes in a solid polymer electrolyte reactor. J. Appl. Electrochem. 47, 63 (2017).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed