Skip to main content Accessibility help

Aluminum-based nanocomposites with hybrid reinforcements prepared by mechanical alloying and selective laser melting consolidation

  • Chenglong Ma (a1), Dongdong Gu (a1), Donghua Dai (a1), Wenhua Chen (a1), Fei Chang (a1), Pengpeng Yuan (a1) and Yifu Shen (a1)...


In this study, Aluminum-based nanocomposites with hybrid reinforcements were successfully prepared by mechanical alloying, followed by consolidation using selective laser melting (SLM). The evolution of particle morphology and microstructural features of the milled powders at various milling times was studied. The results indicated that the milled powder particles experienced a coarsening stage at the early 5 h milling and followed by a continuous refinement during 5–20 h milling. After 20 h of milling, the original coarse needle-like Al3.21Si0.47 evolved into nanometer/submicrometer-sized spherical Al3.21Si0.47. Meanwhile, both fine Al3.21Si0.47 and ex-situ nanoscale TiN particles distributed uniformly within the Al matrix. By SLM processing of the 20-h powder, a near fully dense part with a uniform microstructure consisting of circularly dispersed and submicrometer-sized reinforcement particles embedded in α-Al matrix was obtained. The Vickers hardness and coefficient of friction of the SLM-processed part reached 178 HV0.1 and 0.38, respectively.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Camargo, P.H.C., Satyanarayana, K.G., and Wypych, F.: Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1 (2009).
2. Sekino, T. and Niihara, K.: Microstructural characteristics and mechanical properties for Al2O3/metal nanocomposites. Nanostruct. Mater. 6(5), 663 (1995).
3. Seal, S., Kuiry, S.C., Georgieva, R., and Agarwal, A.: Manufacturing nanocomposite parts: Present status and future challenges. MRS Bull. 29(1), 16 (2004).
4. Zhang, D.L.: Processing of advanced materials using high-energy mechanical milling. Prog. Mater. Sci. 49(3), 537 (2004).
5. Hwang, S. and Nishimnra, C.: Compressive mechanical properties of Mg–Ti–C nanocomposite synthesized by mechanical milling. Scr. Mater. 44(10), 2457 (2001).
6. Marta, G., Jan, D., and Jerzy, M.: Effect of reinforcement particle size on microstructure and mechanical properties of AlZnMgCu/AlN nano-composites produced using mechanical alloying. J. Alloys Compd. 586(1), S423 (2014).
7. Enayati, M.H. and Mohamed, F.A.: Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int. Mater. Rev. 59(7), 394 (2014).
8. Zhou, D.S., Zhang, D.L., Kong, C., Munroe, P., and Torrens, R.: Thermal stability of the nanostructure of mechanically milled Cu-5 vol% Al2O3 nanocomposite powder particles. J. Mater. Res. 29(8), 996 (2014).
9. El-Eskandarany, M.S.: Mechanical solid state mixing for synthesizing of SiCp/Al nanocomposites. J. Alloys Compd. 279(2), 263 (1998).
10. Zhang, G.Q. and Gu, D.D.: Synthesis of nanocrystalline TiC reinforced W nanocomposites by high-energy mechanical alloying: Microstructural evolution and its mechanism. Appl. Surf. Sci. 273, 364 (2013).
11. Kruth, J.P., Mercelis, P., Vaerenbergh, J.V., Froyen, L., and Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J. 11(1), 26 (2005).
12. Attar, H., Bönisch, M., Calin, M., Zhang, L.C., Zhuravleva, K., Funk, A., Scudino, S., Yang, C., and Eckert, J.: Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. J. Mater. Res. 29(17), 1941 (2014).
13. Gu, D.D., Meiners, W., Wissenbach, K., and Poprawe, R.: Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 53(3), 133 (2012).
14. Olakanmi, E.O., Cochrane, R.F., and Dalgarno, K.W.: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci. 74, 401 (2015).
15. Vrancken, B., Thijs, L., Kruth, J.P., and Humbeeck, J.V.: Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting. Acta Mater. 68(15), 150 (2014).
16. Wang, H.Q. and Gu, D.D.: Nanometric TiC reinforced AlSi10Mg nanocomposites: Powder preparation by high-energy ball milling and consolidation by selective laser melting. J. Compos. Mater. 0, 1 (2014).
17. Li, Z.M., Chen, D., Wang, H.W., Lavernia, E.J., and Shan, A.D.: Nano-TiB2 reinforced ultrafine-grained pure Al produced by flux-assisted synthesis and asymmetrical rolling. J. Mater. Res. 29(21), 2514 (2014).
18. Woo, K.D. and Zhang, D.L.: Fabrication of Al–7wt%Si–0.4wt%Mg/SiC nanocomposite powders and bulk nanocomposites by high energy ball milling and powder metallurgy. Curr. Appl. Phys. 4(2), 175 (2004).
19. Jiang, L., Wen, H.M., Yang, H.R., Hu, T., Topping, T., Zhang, D.L., Lavernia, E.J., and Schoenung, J.M.: Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix. Acta Mater. 89, 327 (2015).
20. Poirier, D., Gauvin, R., and Drew, R.A.L.: Characterization of the fabrication steps of a CNTs-al nanocomposite. Microsc. Microanal. 13, 668 (2007).
21. Mohammad Sharifi, E. and Karimzadeh, F.: Wear behavior of aluminum matrix hybrid nanocomposites fabricated by powder metallurgy. Wear 271, 1072 (2011).
22. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46(1), 1 (2001).
23. Yamauchi, I., Takahara, K., Tanaka, T., and Matsubara, K.: Chemical leaching of rapidly solidified Al–Si binary alloys. J. Alloys Compd. 396(1), 302 (2005).
24. Karakose, E. and Keskin, M.: Effect of solidification rate on the microstructure and microhardness of a melt-spun Al–8Si–1Sb alloy. J. Alloys Compd. 476(1), 230 (2009).
25. Dong, X.X., He, L.J., and Mi, G.B.: Two directional microstructure and effects of nanoscale dispersed Si particles on microhardness and tensile properties of AlSi7Mg melt-spun alloy. J. Alloys Compd. 618, 609 (2015).
26. Bendijk, A., Delhez, R., Katgerman, L., De Keijser, T.H., Mittemeijer, E.J., and Van Der Pers, N.M.: Characterization of Al–Si-alloys rapidly quenched from the melt. J. Mater. Sci. 15(11), 2803 (1980).
27. Mittemeijer, E.J.: Fundamentals of Materials Science, 1st ed. (Springer-Verlag Berlin Heidelberg, Berlin, 2010); p. 154.
28. Clark, C.R., Suryanarayana, C., and Froes, F.H.: Advances in Powder Metallurgy and Particulate Materials-1995: Part І (Metal Powder Industries Federation, Princeton, NJ, 1995); pp. 135145.
29. Wu, X., Tao, N., Hong, Y., Xu, B., Lu, J., and Lu, K.: Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of AL-alloy subjected to USSP. Acta Mater. 50(8), 2075 (2002).
30. Tao, N.R., Wang, Z.B., Tong, W.P., Sui, M.L., Lu, J., and Lu, K.: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50(18), 4603 (2002).
31. Wen, M., Liu, G., Gu, J.F., Guan, W.M., and Lu, J.: Dislocation evolution in titanium during surface severe plastic deformation. Appl. Surf. Sci. 255(12), 6097 (2009).
32. Fogagnolo, J.B., Velasco, F., Robert, M.H., and Torralba, J.M.: Effect of mechanical alloying on the morphology, microstructure and properties of aluminum matrix composite powders. Mater. Sci. Eng., A 342(1), 131 (2003).
33. Sun, S.B., Zheng, L.J., Liu, Y.Y., Liu, J.H., and Zhang, H.: Characterization of Al–Fe–V–Si heat-resistant aluminum alloy components fabricated by selective laser melting. J. Mater. Res. 30(10), 1661 (2015).
34. Kruth, J.P., Levy, G., Klocke, F., and Childs, T.H.C.: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56(2), 730 (2007).
35. Gu, D.D.: Laser Additive Manufacturing of High-Performance Materials (Springer-Verlag Berlin Heidelberg, Berlin, 2015); pp. 175198.
36. Buchbinder, D., Schleifenbaum, H., Heidrich, S., Meiners, W., and Bultmann, J.: High power selective laser melting (HP SLM) of aluminum parts. Phys. Proc. 12, 271 (2011).


Related content

Powered by UNSILO

Aluminum-based nanocomposites with hybrid reinforcements prepared by mechanical alloying and selective laser melting consolidation

  • Chenglong Ma (a1), Dongdong Gu (a1), Donghua Dai (a1), Wenhua Chen (a1), Fei Chang (a1), Pengpeng Yuan (a1) and Yifu Shen (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.