Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T08:48:54.840Z Has data issue: false hasContentIssue false

Al2O3 additions for isothermal melt processing of Bi2Sr2CaCu2Oy

Published online by Cambridge University Press:  31 January 2011

T.G. Holesinger
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

It is shown that additions of Al2O3 (1.0 wt. %) can significantly aid in the isothermal melt processing of Bi2Sr2CaCu2Oy (Bi-2212). Al2O3 additions provide a means for grain refinement of phases present in the partial melt. By limiting grain growth in the partial melt, solidification to form Bi-2212 proceeds more efficiently, resulting in fewer secondary phases and improved transport properties. Aluminum does not substitute into the superconducting phase to any appreciable extent and is present in fully processed material as small, secondary grains of approximate composition Sr2−xCaxAlOy or Bi2Sr4−xCaxAl3Oy · Al2O3 additions were applied to the isothermal melt processing of Bi-2212 thick films and current leads.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Heine, K., Tenbrink, J., and Thoner, M., Appl. Phys. Lett. 55, 2441 (1989).CrossRefGoogle Scholar
2.Kase, J., Morimoto, T., Togano, K., Kumakura, H., Dietderich, D. R., and Maeda, H., IEEE Trans. Magn. 27, 1254 (1991).CrossRefGoogle Scholar
3.Li, C., Patel, S., Ye, J., Narumi, E., and Shaw, D. T., Appl. Phys. Lett. 63, 2558 (1993).CrossRefGoogle Scholar
4.Motowidlo, L. R., Galinski, G., Ozeryansky, G., Zhang, W., and Hellstrom, E. E., Appl. Phys. Lett. 65, 21 (1994).CrossRefGoogle Scholar
5.Polonka, J., Xu, M., Li, Qiang, Goldman, A. I., and Finner-more, D. K., Appl. Phys. Lett. 59, 3640 (1991).CrossRefGoogle Scholar
6.Oka, Y., Yamamoto, N., Tomii, Y., Kitaguchi, H., Oda, K., and Takada, J., Jpn. J. Appl. Phys. 28, L801 (1989).CrossRefGoogle Scholar
7.Ray, R. D. II and Hellstrom, E. E., Physica C 172, 435 (1991).CrossRefGoogle Scholar
8.Holesinger, T. G., Miller, D. J., Viswanathan, H. K., and Chumbley, L. S., J. Mater. Res. 8, 2149 (1993).CrossRefGoogle Scholar
9.Holesinger, T. G., Miller, D. J., Viswanathan, H. K., Dennis, K. W., Chumbley, L. S., Winandy, P.W., and Youngdahl, A.C., Appl. Phys. Lett. 63, 982 (1993).CrossRefGoogle Scholar
10.MacManus-Driscoll, J., Wang, Pin-Chin, Bravman, J.C., and Beyers, R. B., Appl. Phys. Lett. 65, 2872 (1994).CrossRefGoogle Scholar
11.Holesinger, T. G., Phillips, D. S., Coulter, J.Y., Willis, J. O., and Peterson, D. E., Physica C 243, 93 (1995).CrossRefGoogle Scholar
12.Holesinger, T. G., Phillips, D. S., Willis, J.O., and Peterson, D. E., IEEE Trans. Appl. Super. 5, 1939 (1995).CrossRefGoogle Scholar
13.Holesinger, T. G., Miller, D. J., and Chumbley, L. S., J. Mater. Res. 7, 1658 (1992).CrossRefGoogle Scholar
14.Holesinger, T. G., unpublished data.Google Scholar
15.Holesinger, T. G., Miller, D. J., and Chumbley, L. S., Physica C 217, 85 (1993).CrossRefGoogle Scholar
16.Hong, B., Hahn, J., and Mason, T. O., J. Am. Ceram. Soc. 73, 1965 (1990).CrossRefGoogle Scholar
17.Lee, C. L., Chen, J. J., Wen, W. J., Perng, T. P., Wu, J. M., Wu, T. B., Chin, T. S., Liu, R. S., and Wu, P. T., J. Mater. Res. 5, 1403 (1990).CrossRefGoogle Scholar
18.Holesinger, T. G., Miller, D. J., Fleshler, S., and Chumbley, L. S., J. Mater. Res. 7, 2035 (1992).CrossRefGoogle Scholar