Skip to main content Accessibility help

Aging behavior of the extruded SiCp-reinforced AZ91 Mg alloy composite

  • Hai Chang (a1), Xiaoshi Hu (a2), Xiaojun Wang (a2), Junfeng Du (a2) and Libo Tong (a3)...


The effect of SiCp on the aging behavior of the extruded SiCp/AZ91 composite fabricated by stir casting was investigated in detail. The necklace-type distribution of the particles in the cast SiCp/AZ91 composite was destroyed, and the extrusion bands consisting of SiCp and small dynamic recrystallized grains formed aligning along the extrusion direction. Addition of SiCp could accelerate the aging kinetics of the AZ91 matrix because of the overlapped particle plastic zone. The improved particle distribution and refined grains caused by the recrystallization could affect the aging behavior of the SiCp/AZ91 composite. The Mg17A112 discontinuous precipitates preferred to nucleate at the SiC/Mg interfaces and the grain boundaries within the extrusion bands and then expanded into the particle-free region. Moreover, the promoted discontinuous precipitates would suppress the continuous intragranular precipitates with respect to the unreinforced AZ91 alloy.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Wang, X.J., Xu, D.K., Wu, R.Z., Chen, X.B., Peng, Q.M., Jin, L., Xin, Y.C., Zhang, Z.Q., Liu, Y., Chen, X.H., Chen, G., Deng, K.K., and Wang, H.Y.: What is going on in magnesium alloys? J. Mater. Sci. Technol. 34, 245 (2018).
2.Huang, L.J., Geng, L., and Peng, H.X.: Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Prog. Mater. Sci. 71, 93 (2015).
3.Wu, Y. and Lavernia, E.J.: Strengthening behavior of particulate reinforced MMCs. Scr. Metall. Mater. 22, 173 (1992).
4.Yang, X., Wang, F., and Fan, Z.: Crystallographic study of nucleation in SiC particulate reinforced magnesium matrix composite. J. Alloys Compd. 706, 430 (2017).
5.Raj, R. and Thakur, D.G.: Qualitative and quantitative assessment of microstructure in Al-B4C metal matrix composite processed by modified stir casting technique. Arch. Civ. Mech. Eng. 16, 949 (2016).
6.Jin, P., Xiao, B.L., Wang, Q.Z., Ma, Z.Y., Liu, Y., and Li, S.: Effect of solution temperature on aging behavior and properties of SiCp/Al–Cu–Mg composites. Mater. Sci. Eng., A 528, 1504 (2011).
7.Rodrigo, P., Poza, P., Utrilla, V., and Ureńa, A.: Effect of reinforcement geometry on precipitation kinetics of powder metallurgy AA2009/SiC composites. J. Alloys Compd. 479, 451 (2009).
8.Cui, Y., Jin, T.Z., Cao, L.G., and Liu, F.B.: Aging behavior of high volume fraction SiCp/Al composites fabricated by pressureless infiltration. J. Alloys Compd. 681, 233 (2016).
9.Guo, J. and Yuan, X.: The aging behavior of SiC/Gr/6013Al composite in T4 and T6 treatments. Mater. Sci. Eng., A 499, 212 (2009).
10.Kiourtsidis, G.E., Skolianos, S.M., and Litsardakis, G.A.: Aging response of aluminium alloy 2024/silicon carbide particles (SiCp) composites. Mater. Sci. Eng., A 382, 351 (2004).
11.Jiang, L.T., Zhao, M., Wu, G.H., and Zhang, Q.: Aging behavior of sub-micron Al2O3P/2024Al composites. Mater. Sci. Eng., A 392, 366 (2005).
12.Janowski, G.M. and Pletka, B.J.: The effect of particle size and volume fraction on the aging behavior of a liquid-phase sintered SiC/Aluminum composite. Metall. Mater. Trans. A 26, 3027 (1995).
13.Kumar, G.S.P., Koppad, P.G., Keshavamurthy, R., and Alipour, M.: Microstructure and mechanical behavior of in sit fabricated AA6061–TiC metal matrix composites. Arch. Civ. Mech. Eng. 17, 535 (2017).
14.Pal, S., Mitra, R., and Bhanuprasad, V.V.: Aging behavior of Al–Cu–Mg alloy–SiC composites. Mater. Sci. Eng., A 480, 496 (2008).
15.Wang, X.J., Hu, X.S., Liu, W.Q., Du, J.F., Wu, K., Huang, Y.D., and Zheng, M.Y.: Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites. Mater. Sci. Eng., A 682, 491 (2017).
16.Badini, C., Marino, F., Montorsi, M., and Guo, X.B.: Precipitation phenomena in B4C-reinforced magnesium-based composite. Mater. Sci. Eng., A 157, 53 (1992).
17.Kiehn, J., Kainer, K.U., Vostrý, P., and Stulíková, I.: Resistivity changes due to precipitation effects in fibre reinforced Mg–Al–Zn–Mn alloy. Phys. Status Solidi A 161, 85 (1995).
18.Zheng, M.Y., Wu, K., Kamado, S., and Kojima, Y.: Aging behavior of squeeze cast SiCw/AZ91 magnesium matrix composite. Mater. Sci. Eng., A 348, 67 (2003).
19.Sun, X.F., Wang, C.J., Deng, K.K., Kang, J.W., Bai, Y., and Nie, K.B.: Aging behavior of AZ91 matrix influenced by 5 μm SiCp: Investigation on the microstructure and mechanical properties. J. Alloys Compd. 727, 1263 (2017).
20.Sun, X.F., Wang, C.J., Deng, K.K., Nie, K.B., Zhang, X.C., and Xiao, X.Y.: High strength SiCp/AZ91 composite assisted by dynamic precipitated Mg17Al12 phase. J. Alloys Compd. 732, 328 (2018).
21.Yu, W., Wang, X., Zhao, H., Huang, Z., Zhai, H., and Xiong, S.: Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting. J. Alloys Compd. 702, 199 (2017).
22.Zhang, X.Q., Liao, L.H., Ma, N.H., and Wang, H.W.: Effect of aging hardening on in situ synthesis magnesium matrix composites. Mater. Chem. Phys. 96, 9 (2006).
23.Gu, M.Y., Wu, Z.G., Jin, Y.P., and Koçak, M.: Effects of reinforcements on the aging response of a ZK60-based hybrid composite. Mater. Sci. Eng., A 272, 257 (1999).
24.Chelliah, N.M., Singh, H., and Surappa, M.K.: Microstructural evolution and strengthening behavior in in situ magnesium matrix composites fabricated by solidification processing. Mater. Chem. Phys. 194, 65 (2017).
25.Gupta, M. and Surappa, M.K.: Effect of increase in heterogeneous nucleation sites on the aging behavior of 6061-SiC metal matrix composites. Mater. Res. Bull. 30, 1023 (1995).
26.Fournelle, R.A. and Clark, J.B.: The genesis of the cellular precipitation reaction. Metall. Trans. 3, 2757 (1972).
27.Huang, J.F., Yu, H.Y., Li, Y.B., Cui, H., He, J.P., and Zhang, J.S.: Precipitation behaviors of spray formed AZ91 magnesium alloy during heat treatment and their strengthen effect. Mater. Des. 30, 440 (2009).
28.Duly, D. and Brechet, Y.: Nucleation mechanism of discontinuous precipitation in Mg–Al alloys and relation with the morphology. Acta Metall. Mater. 42, 3035 (1994).
29.Tu, K.N. and Turnbull, D.: Morphology of cellular precipitation of tin from lead-tin bicrystals. Acta Metall. 15, 369 (1967).
30.Braszczyńska-Malik, K.N.: Discontinuous and continuous precipitation in magnesium–aluminium type alloys. J. Alloys Compd. 477, 870 (2009).
31.Yuan, Y.C., Ma, A.B., Jiang, J.H., Sun, Y., Lu, F.M., Zhang, L.Y., and Song, D.: Aging behaviour and precipitate morphologies in Mg–7.7Al–0.5Zn–0.3Mn (wt%) alloy. J. Alloys Compd. 594, 182 (2014).
32.Kim, S.H., Lee, J.U., Kim, Y.J., Bae, J.H., You, B.S., and Park, S.H.: Accelerated precipitation behavior of cast Mg–Al–Zn alloy by grain refinement. J. Mater. Sci. Technol. 34, 265 (2018).


Aging behavior of the extruded SiCp-reinforced AZ91 Mg alloy composite

  • Hai Chang (a1), Xiaoshi Hu (a2), Xiaojun Wang (a2), Junfeng Du (a2) and Libo Tong (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed