Skip to main content Accessibility help

Ag/epoxy nanocomposite film with aligned Ag nanowires and their polarization property

  • Jinyang Feng (a1), Xiao Ma (a1), Haibo Mao (a1), Baoshun Liu (a1) and Xiujian Zhao (a1)...


The metal nanoparticles dispersed in matrices of composite material are able to apply in different technologies based on their peculiarity. This article reports the preparation of Ag/epoxy nanocomposite film with aligned Ag nanowires coated on glass substrate by multistep processing including synthesis of Ag nanowires by seed-mediated method, dispersion of Ag nanowires in the epoxy resin, and stretching to form the Ag/epoxy nanocomposite film. The results showed that Ag nanowires had been well aligned in the direction of stretching, both in the surface layer and in the internal of the film. Meanwhile, the Ag/epoxy nanocomposite film showed an obviously infrared polarization property in a broad wavelength range from 1600 to 2600 nm, with transmittance over 70%. The mechanisms for the orientation of Ag nanowires and the generation of polarization property of the films were discussed, respectively.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Baba, K., Shiraishi, K., Obi, K., Kataoka, T., and Kawakami, S.: Optical properties of very thin metal films for laminated polarizers. Appl. Opt. 27, 2554 (1988).
2.Shiraishi, K., Hatakeyama, H., Ishibashi, N., and Matsumura, K.: Metal/semiconductor compound ultrathin films for laminated optical polarizers. Appl. Phys. Lett. 64, 957 (1994).
3.Guo, J.P. and Brady, D.: Fabrication of thin film micropolarizer arrays for visible imaging polarimetry. Appl. Opt. 39, 1486 (2000).
4.Saito, M., Kirihara, M., and Taniguchi, T.: Micropolarizer made of the anodized alumina film. Appl. Phys. Lett. 55, 607 (1989).
5.Sau, T.K., Rogach, A.L., Jackel, F., Klar, T.A., and Feldmann, J.: Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 22, 1805 (2010).
6.Moores, A. and Goettmann, F.: The plasmon band in noble metal nanoparticles: An introduction to theory and applications. N. J. Chem. 30, 1121 (2006).
7.Burda, C., Chen, X.B., Narayanan, R., and El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005).
8.Sandrock, M.L., Pibel, C.D., Geiger, F.M., and Foss, C.A. Jr.: Synthesis and second-harmonic generation studies of noncentrosymmetric gold Nanostructures. J. Phys. Chem. B 103, 2668 (1999).
9.Nikolajsen, T., Leosson, K., and Bozhevolyni, S.I.: Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 5833 (2004).
10.Raschke, G., Kowarik, S., Franzl, T., Sonnichsen, C., Klar, T.A., Feldmann, J., Nichtl, A., and Kulrzinger, K.: Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935 (2003).
11.Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C.: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).
12.Sun, Y.G. and Xia, Y.N.: Nanoparticles shape-controlled synthesis of gold and silver. Science 298, 2176 (2002).
13.Jin, R.C., Cao, Y.C., Hao, E.C., Metraux, G.S., Schatz, G.C., and Mirkin, C.A.: Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487 (2003).
14.Gao, Y., Jiang, P., Liu, D.F., Yuan, H.J., Yan, X.Q., Zhou, Z.P., Wang, J.X., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., Wang, C.Y., and Xie, S.S.: Synthesis, characterization and self-assembly of silver nanowires. Chem. Phys. Lett. 380, 146 (2003).
15.Skinner, K., Dwyer, C., and Washburn, S.: Selective functionalization of arbitrary nanowires. Nano Lett. 6, 2758 (2006).
16.Zhao, S.Y., Roberge, H., Yelon, A., and Veres, T.: New application of AAO template: A mold for nanoring and nanocone arrays. J. Am. Chem. Soc. 128, 12352 (2006).
17.Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J., and Mallouk, T.E.: Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399 (2000).
18.Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.H., and Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001).
19.Auvray, S., Derycke, V., Goffman, M., Filoramo, A., Jost, O., and Bourgoin, J.P.: Chemical optimization of self-assembled carbon nanotube transistors. Nano Lett. 5, 451 (2005).
20.Yu, G.H., Cao, A.Y., and Lieber, C.M.: Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2, 372 (2007).
21.Skillman, D.C. and Berry, C.R.: Effect of particle shape on the spectral absorption of colloidal silver in gelatin. J. Chem. Phys. 48, 3297 (1968).
22.Grossman, D.G., Vandegrift, L.R., Williams, J.M., and Whitbred, G.N.: Method of making a polarizing glass, US6536236, 2003.
23.Borrelli, N.F., and Trotter, D.M.: Method of making polarizing glasses, US7104090, 2006.
24.Borrelli, F.N., Mann, G.L., and Whitbred, G.N.: Broadband contrast polarizing glass, US6221480, 2001.
25.Wang, Q.Q., Han, J.B., Gong, H.M., Chen, D.J., Zhao, X.J., Feng, J.Y., and Ren, J.J.: Linear and nonlinear optical properties of Ag nanowire polarizing glass. Adv. Funct. Mater. 16, 2405 (2006).
26.Feng, J.Y., Zhao, X.J., Liu, B.S., and Zhou, X.D.: Microstructural characterization and optical polarization of glass with needle-like micro–nano silver oriented arrangement. Opt. Commun. 281, 5041 (2008).
27.Lin, C.G., Tao, H.Z., Feng, J.Y., Gong, L.J., Pan, R.K., and Zhao, X.J.: Preparation of polarizing glasses of large size based on the directional alignment of crystal nucleus. Mater. Lett. 62, 4100 (2008).
28.Matsuda, S., Yasuda, Y., and Ando, S.: Fabrication of polyimide-blend thin films containing uniformly oriented silver nanorods and their use as flexible linear polarizers. Adv. Mater. 17, 2221 (2005).
29.Dirix, Y., Bastiaansen, C., Caseri, W., and Smith, P.: Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters. Adv. Mater. 11, 223 (1999).
30.van der Zande, B.M.I., Page`s, L., Hikmet, R.A.M., and van Blaaderen, A.: Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films. J. Phys. Chem. B 103, 5761 (1999).
31.Wilson, O., Wilson, G.J., and Mulvaney, P.: Laser writing in polarized silver nanorod films. Adv. Mater. 14, 1000 (2002).
32.Juste, J.P., González, B.R., Mulvaney, P., and Liz-Marzán, L.M.: Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Adv. Funct. Mater. 15, 1065 (2005).
33.Chen, D.L. and Gao, L.: Large-scale growth and end-to-end assembly of silver nanorods by PVP-directed polyol process. J. Cryst. Growth 264, 216 (2004).
34.Sun, Y.G., Mayers, B., Herricks, T., and Xia, Y.N.: Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 3, 955 (2003).
35.Huang, H.H., Ni, X.P., Loy, G.L., Chew, C.H., Tan, K.L., Loh, F.C., Deng, J.F., and Xu, G.Q.: Photochemical formation of silver nanoparticles in Poly(N-vinylpyrrolidone). Langmuir 12, 909 (1996).
36.Egon Matijevic: Preparation and properties of uniform size colloids. Chem. Mater. 5, 412 (1993).
37.Silvert, P.Y., Urbina, R.H., and Elhsissen, K.T.: Preparation of colloidal silver dispersions by the polyol process: Mechanism of particle formation. J. Mater. Chem. 7, 293 (1997).
38.Sun, Y.G. and Xia, Y.N.: Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 14, 833 (2002).
39.Sun, Y.G., Yin, Y.D., Mayers, B.T., Herricks, T., and Xia, Y.N.: Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and Poly(Vinyl Pyrrolidone). Chem. Mater. 14, 4736 (2002).
40.Tsuji, M., Matsumoto, K., Miyamae, N., Tsuji, T., and Zhang, X.: Rapid preparation of silver nanorods and nanowires by a microwave-polyol method in the presence of Pt catalyst and polyvinylpyrrolidone. Cryst. Growth Des. 7, 311 (2007).
41.Buffeteau, T., Desbat, B., and Bokobza, L.: The use of near-infra-red spectroscopy coupled to the polarization modulation technique to investigate molecular orientation in uniaxially stretched polymers. Polymer 36, 4339 (1995).
42.Davis, K.M. and Tomozawa, M.: An infrared spectroscopic study of water-related species in silica glasses. J. Non-Cryst. Solids 201, 177 (1996).
43.Saito, M. and Miyagi, M.: Micropolarizer using anodized alumina with implanted metallic columns: Theoretical analysis. Appl. Opt. 28, 3529 (1989).
44.Saito, M. and Miyagi, M.: Anisotropic optical loss and birefringence of anodized alumina film. J. Opt. Soc. Am. A 6, 1895 (1989).


Related content

Powered by UNSILO

Ag/epoxy nanocomposite film with aligned Ag nanowires and their polarization property

  • Jinyang Feng (a1), Xiao Ma (a1), Haibo Mao (a1), Baoshun Liu (a1) and Xiujian Zhao (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.